首页 > 其他 > 详细

UVA 1363 - Joseph's Problem(数论)

时间:2014-07-06 12:08:46      阅读:311      评论:0      收藏:0      [点我收藏+]

UVA 1363 - Joseph‘s Problem

题目链接

题意:给定n, k,求出ni=1(k mod i)

思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分成[k,k/2],[k/2, k/3], [k/3,k/4]...k[k/a, k/b]这样的等差数列,利用大步小步算法思想,这里a枚举到sqrt(k)就可以了,这样就还剩下[1,k/a]的序列需要去枚举,总时间复杂度为O(sqrt(k)),然后注意对于n大于k的情况,n超过k的部分全是等于k,为(n - k) * k,这样把所有部分加起来就是答案

这有一篇比较详细的题解

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>

long long n, k;

long long solve() {
    long long ans = 0;
    if (n > k) ans += (n - k) * k;
    long long a = (long long )sqrt(k), b = k / a;
    for (long long i = a; i > 1; i--) {
	long long a0 = k / i, an = k / (i - 1);
	if (a0 > n) break;
	if (an > n) an = n;
	ans += (k % an + k % (a0 + 1)) * (an - a0) / 2;
    }
    for (int i = 1; i <= n && i <= b; i++) ans += k % i;
    return ans;
}

int main() {
    while (~scanf("%lld%lld", &n, &k)) {
	printf("%lld\n", solve());
    }
    return 0;
}

UVA 1363 - Joseph's Problem(数论),布布扣,bubuko.com

UVA 1363 - Joseph's Problem(数论)

原文:http://blog.csdn.net/accelerator_/article/details/36949761

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!