首页 > 其他 > 详细

bzoj3672: [Noi2014]购票(树形DP+斜率优化+可持久化凸包)

时间:2018-01-06 21:42:52      阅读:260      评论:0      收藏:0      [点我收藏+]

  这题的加强版,多了一个$l_i$的限制,少了一个$p_i$的单调性,难了好多...

  首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$

  $\frac {f(j)-f(k)}{dep_j-dep_k}<p_i$

  假如没有$l_i$的限制,实际上就是上面那题...

  如果多了$l_i$的限制会有什么影响呢?

技术分享图片

 

  类似上图的情况...红线是$l_i$的限制,如果是单调队列写法的话,P点会被删掉,但实际上P点依然有可能成为最优决策点...

  这个时候一个单调队列的写法就不可行了...

  之所以会出现这个问题,是因为P点被不属于$l_i$范围内的点给弹出了,所以我们只能在不存在$l_i$之外的点的单调队列里查,但是这样我们要开$O(n)$个队列,显然无法承受,但是我们知道的是,凸包是可以合并的,所以直接用线段树来维护就好了。

  我们需要维护$2n$个队列,像线段树一样,分别维护深度为$[1,dep],[1,dep/2],[dep/2+1,dep],[1,dep/4],[dep/4+1,dep/2],...$的单调队列,每次询问的时候把在距离范围内的区间一个一个合并起来,每个区间都需要二分$O(logn)$找出最优决策点,最后合并$O(logn)$个区间,合并的时候只需要求出一个各个区间最优决策点的凸包就好了,每次合并$O(1)$,复杂度$O(nlog^2n)$。

  修改的话同理,把包含当前点的所有区间都二分找到出队位置移动队尾位置,同时记录下被覆盖的点,维护一下可持久化凸包,然后就可以了,这一部分细节比较多,结合代码更好理解。

 

bzoj3672: [Noi2014]购票(树形DP+斜率优化+可持久化凸包)

原文:https://www.cnblogs.com/Sakits/p/8215297.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!