首页 > 其他 > 详细

[BZOJ3994][SDOI2015]约数个数和

时间:2018-01-09 16:17:51      阅读:213      评论:0      收藏:0      [点我收藏+]

BZOJ
Luogu
题意:
给定n,m,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\),其中\(d(x)\)表示x的约数个数。多组数据,n,m<=50000,T<=50000

sol

首先我们大胆猜想,
\[d(ij)=\sum_{u|i}\sum_{v|j}[\gcd(u,v)==1]\]
(证明晚上再补。。。)
好然后我们看,我们已知
\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{u|i}\sum_{v|j}[\gcd(u,v)==1]\]
显然这四个\(\sum\)很不好搞,所以我们考虑枚举\(u,v\),计算每一对\((u,v)\)的贡献。
\[ans=\sum_{u=1}^{n}\sum_{v=1}^{m}[\gcd(u,v)==1]\lfloor \frac nu \rfloor\lfloor \frac mv \rfloor\]
写出这个形式那就好办了,
\[f(d)=\sum_{u=1}^{n}\sum_{v=1}^{m}[\gcd(u,v)==d]\lfloor \frac nu \rfloor\lfloor \frac mv \rfloor\]
\[F(d)=\sum_{u=1}^{n}\sum_{v=1}^{m}[d|\gcd(u,v)]\lfloor \frac nu \rfloor\lfloor \frac mv \rfloor\]
\(F(d)\)的表达式中显然\(u\)\(v\)都是\(d\)的倍数,所以我们可以令\(u=id,v=jd\)然后
\[F(d)=\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\lfloor \frac {n}{id} \rfloor\lfloor \frac {m}{jd} \rfloor=\sum_{i=1}^{n/d}\lfloor \frac {n/d}{i} \rfloor * \sum_{j=1}^{m/d}\lfloor \frac {m/d}{j} \rfloor\]
注意上面的那个结构,形如\(\sum_{i=1}^{n}\frac ni\),我们把它记作\(sum(n)\)。如果你做过这道题[AHOI2005]约数研究就应该不难知道这是啥。
\(sum(n)=\sum_{i=1}^{n} \frac ni\)表示1~n中每个数的约数个数和
所以就是对每个数求一下约数个数再取前缀和即可。
对一个数求约数个数使用唯一分解定理,复杂度\(O(n\sqrt n)\)(预处理)
别忘了答案式
\[ans=f(1)=\sum_{d=1}^{n}\mu(d)F(d)=\sum_{d=1}^{n}\mu(d)sum(\lfloor \frac {n}{d} \rfloor)sum(\lfloor \frac {m}{d} \rfloor)\]
\(O(n)\)处理出\(\mu(d)\)的前缀和然后直接数论分块一波
复杂度\(O(T\sqrt n)\)

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 50000;
int gi()
{
    int x=0,w=1;char ch=getchar();
    while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
    if (ch=='-') w=0,ch=getchar();
    while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return w?x:-x;
}
int mu[N+5],pri[N+5],tot,zhi[N+5];
ll s[N+5],f[N+5];
void Mobius()
{
    zhi[1]=mu[1]=1;
    for (int i=2;i<=N;i++)
    {
        if (!zhi[i]) pri[++tot]=i,mu[i]=-1;
        for (int j=1;j<=tot&&i*pri[j]<=N;j++)
        {
            zhi[i*pri[j]]=1;
            if (i%pri[j]) mu[i*pri[j]]=-mu[i];
            else {mu[i*pri[j]]=0;break;}
        }
    }
    for (int i=1;i<=N;i++)
        s[i]=s[i-1]+mu[i];
}
int Divide(int x)
{
    int p[10]={0},k[10]={0},t=0;
    for (int i=2;i*i<=x;i++)
        if (x%i==0)
        {
            p[++t]=i;
            while (x%i==0) k[t]++,x/=i;
        }
    if (x>1) p[++t]=x,k[t]=1;
    int res=1;
    for (int i=1;i<=t;i++)
        res*=k[i]+1;
    return res;
}
int main()
{
    Mobius();
    for (int i=1;i<=N;i++)
        f[i]=f[i-1]+Divide(i);
    int T=gi();
    while (T--)
    {
        int n=gi(),m=gi();
        if (n>m) swap(n,m);
        int i=1;ll ans=0;
        while (i<=n)
        {
            int j=min(n/(n/i),m/(m/i));
            ans+=(s[j]-s[i-1])*f[n/i]*f[m/i];
            i=j+1;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

[BZOJ3994][SDOI2015]约数个数和

原文:https://www.cnblogs.com/zhoushuyu/p/8251403.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!