首页 > 其他 > 详细

模块与包

时间:2018-01-11 21:46:46      阅读:188      评论:0      收藏:0      [点我收藏+]

一 模块介绍

1、什么是模块?

#常见的场景:一个模块就是一个包含了一组功能的python文件,比如spam.py,模块名为spam,可以通过import spam使用。

#在python中,模块的使用方式都是一样的,但其实细说的话,模块可以分为四个通用类别: 
使用python编写的.py文件
已被编译为共享库或DLL的C或C++扩展
把一系列模块组织到一起的文件夹(注:文件夹下有一个__init__.py文件,该文件夹称之为包)
使用C编写并链接到python解释器的内置模块

2、为何要使用模块?

#1、从文件级别组织程序,更方便管理
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用

#2、拿来主义,提升开发效率
同样的原理,我们也可以下载别人写好的模块然后导入到自己的项目中使用,这种拿来主义,可以极大地提升我们的开发效率

#ps:
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

3、以spam.py为例来介绍模块的使用:文件名spam.py,模块名spam

技术分享图片
#spam.py
print(from the spam.py)

money=1000

def read1():
    print(spam模块:,money)

def read2():
    print(spam模块)
    read1()

def change():
    global money
    money=0
spam.py

二 使用模块之import

1、import的使用

技术分享图片
#模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载到内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下 

#test.py
import spam #只在第一次导入时才执行spam.py内代码,此处的显式效果是只打印一次‘from the spam.py‘,当然其他的顶级代码也都被执行了,只不过没有显示效果.
import spam
import spam
import spam

‘‘‘
执行结果:
from the spam.py
‘‘‘
技术分享图片

ps:我们可以从sys.module中找到当前已经加载的模块,sys.module是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。

2、在第一次导入模块时会做三件事,重复导入会直接引用内存中已经加载好的结果

技术分享图片
#1.为源文件(spam模块)创建新的名称空间,在spam中定义的函数和方法若是使用到了global时访问的就是这个名称空间。

#2.在新创建的命名空间中执行模块中包含的代码,见初始导入import spam
    提示:导入模块时到底执行了什么?
    In fact function definitions are also ‘statements’ that are 
    ‘executed’; the execution of a module-level function definition 
    enters the function name in the module’s global symbol table.
    事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放
    入模块全局名称空间表,用globals()可以查看

#3.创建名字spam来引用该命名空间
    这个名字和变量名没什么区别,都是‘第一类的’,且使用spam.名字的方式
    可以访问spam.py文件中定义的名字,spam.名字与test.py中的名字来自
    两个完全不同的地方。
技术分享图片

3、被导入模块有独立的名称空间

每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突

技术分享图片
复制代码
#test.py
import spam 
money=10
print(spam.money)

‘‘‘
执行结果:
from the spam.py
1000
‘‘‘
复制代码
测试一:money与spam.money不冲突
技术分享图片
#test.py
import spam
def read1():
    print(========)
spam.read1()

‘‘‘
执行结果:
from the spam.py
spam->read1->money 1000
‘‘‘

测试二:read1与spam.read1不冲突
测试二:read1与spam.read1不冲突
技术分享图片
#test.py
import spam
money=1
spam.change()
print(money)

‘‘‘
执行结果:
from the spam.py
‘‘‘

测试三:执行spam.change()操作的全局变量money仍然是spam中的
测试三:执行spam.change()操作的全局变量money仍然是spam中的

4、为模块名起别名

为已经导入的模块起别名的方式对编写可扩展的代码很有用

1 import spam as sm
2 print(sm.money)

有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能

技术分享图片
#mysql.py
def sqlparse():
    print(from mysql sqlparse)
#oracle.py
def sqlparse():
    print(from oracle sqlparse)

#test.py
db_type=input(>>: )
if db_type == mysql:
    import mysql as db
elif db_type == oracle:
    import oracle as db

db.sqlparse()
View Code

假设有两个模块xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块

技术分享图片
if file_format == xml:
    import xmlreader as reader
elif file_format == csv:
    import csvreader as reader
data=reader.read_date(filename)
View Code

5、在一行导入多个模块

1 import sys,os,re

三 使用模块之from ... import...

1、from...import...的使用

 1 from spam import read1,read2

2、from...import 与import的对比

#唯一的区别就是:使用from...import...则是将spam中的名字直接导入到当前的名称空间中,所以在当前名称空间中,直接使用名字就可以了、无需加前缀:spam.

#from...import...的方式有好处也有坏处
    好处:使用起来方便了
    坏处:容易与当前执行文件中的名字冲突

验证一:当前位置直接使用read1和read2就好了,执行时,仍然以spam.py文件全局名称空间

技术分享图片
#测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money
#test.py
from spam import read1
money=1000
read1()
‘‘‘
执行结果:
from the spam.py
spam->read1->money 1000
‘‘‘

#测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1()
#test.py
from spam import read2
def read1():
    print(==========)
read2()

‘‘‘
执行结果:
from the spam.py
spam->read2 calling read
spam->read1->money 1000
‘‘‘
View Code

验证二:如果当前有重名read1或者read2,那么会有覆盖效果。

技术分享图片
#测试三:导入的函数read1,被当前位置定义的read1覆盖掉了
#test.py
from spam import read1
def read1():
    print(==========)
read1()
‘‘‘
执行结果:
from the spam.py
==========
‘‘‘
View Code

验证三:导入的方法在执行时,始终是以源文件为准的

技术分享图片
from spam import money,read1
money=100 #将当前位置的名字money绑定到了100
print(money) #打印当前的名字
read1() #读取spam.py中的名字money,仍然为1000

‘‘‘
from the spam.py
spam->read1->money 1000
‘‘‘
View Code

3、也支持as

1 from spam import read1 as read

4、一行导入多个名字

from spam import read1,read2,money

5、from...import *

#from spam import * 把spam中所有的不是以下划线(_)开头的名字都导入到当前位置

#大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
技术分享图片
from spam import * #将模块spam中所有的名字都导入到当前名称空间
print(money)
print(read1)
print(read2)
print(change)

‘‘‘
执行结果:
from the spam.py
<function read1 at 0x1012e8158>
<function read2 at 0x1012e81e0>
<function change at 0x1012e8268>
‘‘‘
View Code

可以使用__all__来控制*(用来发布新版本),在spam.py中新增一行

__all__=[‘money‘,‘read1‘] #这样在另外一个文件中用from spam import *就这能导入列表中规定的两个名字

四 模块的重载 (了解)

考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块,

有的同学可能会想到直接从sys.module中删除一个模块不就可以卸载了吗,注意了,你删了sys.module中的模块对象仍然可能被其他程序的组件所引用,因而不会被清楚。

特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。

如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。

技术分享图片
def func1():
    print(func1)
aa.py的初始内容
技术分享图片
1 import time,importlib
2 import aa
3 
4 time.sleep(20)
5 # importlib.reload(aa)
6 aa.func1()
执行test.py

五 py文件区分两种用途:模块与脚本

#编写好的一个python文件可以有两种用途:
一:脚本,一个文件就是整个程序,用来被执行
二:模块,文件中存放着一堆功能,用来被导入使用


#python为我们内置了全局变量__name__,
当文件被当做脚本执行时:__name__ 等于‘__main__‘
当文件被当做模块导入时:__name__等于模块名

#作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__ == ‘__main__‘:

技术分享图片
#fib.py

def fib(n):    # write Fibonacci series up to n
    a, b = 0, 1
    while b < n:
        print(b, end= )
        a, b = b, a+b
    print()

def fib2(n):   # return Fibonacci series up to n
    result = []
    a, b = 0, 1
    while b < n:
        result.append(b)
        a, b = b, a+b
    return result

if __name__ == "__main__":
    import sys
    fib(int(sys.argv[1]))


#执行:python fib.py <arguments>
python fib.py 50 #在命令行
View Code

六 模块搜索路径

模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块

技术分享图片
#官网链接:https://docs.python.org/3/tutorial/modules.html#the-module-search-path
搜索路径:
当一个命名为spam的模块被导入时
    解释器首先会从内建模块中寻找该名字
    找不到,则去sys.path中找该名字

sys.path从以下位置初始化
执行文件所在的当前目录
PTYHONPATH(包含一系列目录名,与shell变量PATH语法一样)
依赖安装时默认指定的

注意:在支持软连接的文件系统中,执行脚本所在的目录是在软连接之后被计算的,换句话说,包含软连接的目录不会被添加到模块的搜索路径中

在初始化后,我们也可以在python程序中修改sys.path,执行文件所在的路径默认是sys.path的第一个目录,在所有标准库路径的前面。这意味着,当前目录是优先于标准库目录的,需要强调的是:我们自定义的模块名不要跟python标准库的模块名重复,除非你是故意的,傻叉。
详细的

七 编译python文件(了解)

为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,spam.py模块会被缓存成__pycache__/spam.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。

Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的,不是用来加密的。

技术分享图片
#python解释器在以下两种情况下不检测缓存
#1 如果是在命令行中被直接导入模块,则按照这种方式,每次导入都会重新编译,并且不会存储编译后的结果(python3.3以前的版本应该是这样)
    python -m spam.py

#2 如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下
sh-3.2# ls
__pycache__ spam.py
sh-3.2# rm -rf spam.py 
sh-3.2# mv __pycache__/spam.cpython-36.pyc ./spam.pyc
sh-3.2# python3 spam.pyc 
spam
 

#提示:
1.模块名区分大小写,foo.py与FOO.py代表的是两个模块
2.你可以使用-O或者-OO转换python命令来减少编译模块的大小
    -O转换会帮你去掉assert语句
    -OO转换会帮你去掉assert语句和__doc__文档字符串
    由于一些程序可能依赖于assert语句或文档字符串,你应该在在确认需要
    的情况下使用这些选项。
3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的

4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件

模块可以作为一个脚本(使用python -m compileall)编译Python源  
python -m compileall /module_directory 递归着编译
如果使用python -O -m compileall /module_directory -l则只一层
  
命令行里使用compile()函数时,自动使用python -O -m compileall
  
详见:https://docs.python.org/3/library/compileall.html#module-compileall

详细的
详细的

八 包介绍

1、什么是包?

#官网解释
Packages are a way of structuring Python’s module namespace by using “dotted module names”
包是一种通过使用‘.模块名’来组织python模块名称空间的方式。

#具体的:包就是一个包含有__init__.py文件的文件夹,所以其实我们创建包的目的就是为了用文件夹将文件/模块组织起来

#需要强调的是:
  1. 在python3中,即使包下没有__init__.py文件,import 包仍然不会报错,而在python2中,包下一定要有该文件,否则import 包报错

  2. 创建包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包的本质就是一种模块

3、注意事项

技术分享图片
#1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,否则非法。可以带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。但对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。

#2、import导入文件时,产生名称空间中的名字来源于文件,import 包,产生的名称空间的名字同样来源于文件,即包下的__init__.py,导入包本质就是在导入该文件

#3、包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间
技术分享图片

4、上课流程

技术分享图片
实验一
    准备:
        执行文件为test.py,内容
        #test.py
        import aaa
        同级目录下创建目录aaa,然后自建空__init__.py(或者干脆建包)

    需求:验证导入包就是在导入包下的__init__.py

    解决:
        先执行看结果
        再在__init__.py添加打印信息后,重新执行

2、实验二
    准备:基于上面的结果

    需求:
        aaa.x
        aaa.y
    解决:在__init__.py中定义名字x和y

3、实验三
    准备:在aaa下建立m1.py和m2.py
        #m1.py
        def f1():
            print(from 1)
        #m2.py
        def f2():
            print(from 2)
    需求:
        aaa.m1 #进而aaa.m1.func1()
        aaa.m2 #进而aaa.m2.func2()

    解决:在__init__.py中定义名字m1和m2,先定义一个普通变量,再引出如何导入模块名,强调:环境变量是以执行文件为准
    

4、实验四
    准备:在aaa下新建包bbb

    需求:
        aaa.bbb

    解决:在aaa的__init__.py内导入名字bbb

5、实验五
    准备:
        在bbb下建立模块m3.py
        #m3.py
        def f3():
            print(from 3)
    需求:
        aaa.bbb.m3 #进而aaa.bbb.m3.f3()

    解决:是bbb下的名字m3,因而要在bbb的__init__.py文件中导入名字m3,from aaa.bbb import m3

6、实验六
    准备:基于上面的结果

    需求:
        aaa.m1()
        aaa.m2()
        aaa.m3()
        进而实现
        aaa.f1()
        aaa.f2()
        aaa.f3()
        先用绝对导入,再用相对导入
        
    解决:在aaa的__init__.py中拿到名字m1、m2、m3
    包内模块直接的相对导入,强调包的本质:包内的模块是用来被导入的,而不是被执行的
    用户无法区分模块是文件还是一个包,我们定义包是为了方便开发者维护

7、实验七
    将包整理当做一个模块,移动到别的目录下,操作sys.path
View Code

九 包的使用

1、示范文件

glance/                   #Top-level package

├── __init__.py      #Initialize the glance package

├── api                  #Subpackage for api

│   ├── __init__.py

│   ├── policy.py

│   └── versions.py

├── cmd                #Subpackage for cmd

│   ├── __init__.py

│   └── manage.py

└── db                  #Subpackage for db

    ├── __init__.py

    └── models.py
技术分享图片
#文件内容

#policy.py
def get():
    print(from policy.py)

#versions.py
def create_resource(conf):
    print(from version.py: ,conf)

#manage.py
def main():
    print(from manage.py)

#models.py
def register_models(engine):
    print(from models.py: ,engine)

包所包含的文件内容

文件内容
文件内容

执行文件与示范文件在同级目录下

2、包的使用之import 

1 import glance.db.models
2 glance.db.models.register_models(‘mysql‘) 

单独导入包名称时不会导入包中所有包含的所有子模块,如

技术分享图片
#在与glance同级的test.py中
import glance
glance.cmd.manage.main()

‘‘‘
执行结果:
AttributeError: module ‘glance‘ has no attribute ‘cmd‘

‘‘‘ 
技术分享图片

解决方法:

1 #glance/__init__.py
2 from . import cmd
3 
4 #glance/cmd/__init__.py
5 from . import manage

执行:

1 #在于glance同级的test.py中
2 import glance
3 glance.cmd.manage.main()

3、包的使用之from ... import ...

需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法

1 from glance.db import models
2 models.register_models(‘mysql‘)
3 
4 from glance.db.models import register_models
5 register_models(‘mysql‘)

4、from glance.api import *

在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。

此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___:

技术分享图片
1 #在__init__.py中定义
2 x=10
3 
4 def func():
5     print(‘from api.__init.py‘)
6 
7 __all__=[‘x‘,‘func‘,‘policy‘]
技术分享图片

此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。

练习:

#执行文件中的使用效果如下,请处理好包的导入
from glance import *

get()
create_resource(a.conf)
main()
register_models(mysql)
技术分享图片
#在glance.__init__.py中
from .api.policy import get
from .api.versions import create_resource

from .cmd.manage import main
from .db.models import  register_models

__all__=[get,create_resource,main,register_models]
View Code

5、绝对导入和相对导入

我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式:

绝对导入:以glance作为起始

相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内)

例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py

技术分享图片
1 在glance/api/version.py
2 
3 #绝对导入
4 from glance.cmd import manage
5 manage.main()
6 
7 #相对导入
8 from ..cmd import manage
9 manage.main()
技术分享图片

测试结果:注意一定要在于glance同级的文件中测试

1 from glance.api import versions 

6、包以及包所包含的模块都是用来被导入的,而不是被直接执行的。而环境变量都是以执行文件为准的

比如我们想在glance/api/versions.py中导入glance/api/policy.py,有的同学一抽这俩模块是在同一个目录下,十分开心的就去做了,它直接这么做

1 #在version.py中
2 
3 import policy
4 policy.get()

没错,我们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,于是在导入policy时能在当前目录下找到

但是你想啊,你子包中的模块version.py极有可能是被一个glance包同一级别的其他文件导入,比如我们在于glance同级下的一个test.py文件中导入version.py,如下

技术分享图片
 1 from glance.api import versions
 2 
 3 ‘‘‘
 4 执行结果:
 5 ImportError: No module named ‘policy‘
 6 ‘‘‘
 7 
 8 ‘‘‘
 9 分析:
10 此时我们导入versions在versions.py中执行
11 import policy需要找从sys.path也就是从当前目录找policy.py,
12 这必然是找不到的
13 ‘‘‘
技术分享图片

7、包的分发(了解)

https://packaging.python.org/distributing/

十 软件开发规范

技术分享图片

技术分享图片
#===============>star.py
import sys,os
BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)

from core import src

if __name__ == __main__:
    src.run()
#===============>settings.py
import os

BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
DB_PATH=os.path.join(BASE_DIR,db,db.json)
LOG_PATH=os.path.join(BASE_DIR,log,access.log)
LOGIN_TIMEOUT=5

"""
logging配置
"""
# 定义三种日志输出格式
standard_format = [%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]                   [%(levelname)s][%(message)s] #其中name为getlogger指定的名字
simple_format = [%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s
id_simple_format = [%(levelname)s][%(asctime)s] %(message)s

# log配置字典
LOGGING_DIC = {
    version: 1,
    disable_existing_loggers: False,
    formatters: {
        standard: {
            format: standard_format
        },
        simple: {
            format: simple_format
        },
    },
    filters: {},
    handlers: {
        #打印到终端的日志
        console: {
            level: DEBUG,
            class: logging.StreamHandler,  # 打印到屏幕
            formatter: simple
        },
        #打印到文件的日志,收集info及以上的日志
        default: {
            level: DEBUG,
            class: logging.handlers.RotatingFileHandler,  # 保存到文件
            formatter: standard,
            filename: LOG_PATH,  # 日志文件
            maxBytes: 1024*1024*5,  # 日志大小 5M
            backupCount: 5,
            encoding: utf-8,  # 日志文件的编码,再也不用担心中文log乱码了
        },
    },
    loggers: {
        #logging.getLogger(__name__)拿到的logger配置
        ‘‘: {
            handlers: [default, console],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            level: DEBUG,
            propagate: True,  # 向上(更高level的logger)传递
        },
    },
}


#===============>src.py
from conf import settings
from lib import common
import time

logger=common.get_logger(__name__)

current_user={user:None,login_time:None,timeout:int(settings.LOGIN_TIMEOUT)}
def auth(func):
    def wrapper(*args,**kwargs):
        if current_user[user]:
            interval=time.time()-current_user[login_time]
            if interval < current_user[timeout]:
                return func(*args,**kwargs)
        name = input(name>>: )
        password = input(password>>: )
        db=common.conn_db()
        if db.get(name):
            if password == db.get(name).get(password):
                logger.info(登录成功)
                current_user[user]=name
                current_user[login_time]=time.time()
                return func(*args,**kwargs)
        else:
            logger.error(用户名不存在)

    return wrapper

@auth
def buy():
    print(buy...)

@auth
def run():

    print(‘‘‘
购物
查看余额
转账
    ‘‘‘)
    while True:
        choice = input(>>: ).strip()
        if not choice:continue
        if choice == 1:
            buy()



#===============>db.json
{"egon": {"password": "123", "money": 3000}, "alex": {"password": "alex3714", "money": 30000}, "wsb": {"password": "3714", "money": 20000}}

#===============>common.py
from conf import settings
import logging
import logging.config
import json

def get_logger(name):
    logging.config.dictConfig(settings.LOGGING_DIC)  # 导入上面定义的logging配置
    logger = logging.getLogger(name)  # 生成一个log实例
    return logger


def conn_db():
    db_path=settings.DB_PATH
    dic=json.load(open(db_path,r,encoding=utf-8))
    return dic


#===============>access.log
[2017-10-21 19:08:20,285][MainThread:10900][task_id:core.src][src.py:19][INFO][登录成功]
[2017-10-21 19:08:32,206][MainThread:10900][task_id:core.src][src.py:19][INFO][登录成功]
[2017-10-21 19:08:37,166][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在]
[2017-10-21 19:08:39,535][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在]
[2017-10-21 19:08:40,797][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在]
[2017-10-21 19:08:47,093][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在]
[2017-10-21 19:09:01,997][MainThread:10900][task_id:core.src][src.py:19][INFO][登录成功]
[2017-10-21 19:09:05,781][MainThread:10900][task_id:core.src][src.py:24][ERROR][用户名不存在]
[2017-10-21 19:09:29,878][MainThread:8812][task_id:core.src][src.py:19][INFO][登录成功]
[2017-10-21 19:09:54,117][MainThread:9884][task_id:core.src][src.py:19][INFO][登录成功]
View Code

 

  

模块与包

原文:https://www.cnblogs.com/luckchao/p/8270483.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!