首页 > 其他 > 详细

查找(一)二分查找

时间:2018-01-14 18:27:21      阅读:62      评论:0      收藏:0      [点我收藏+]

标签:次数   ....   ins   复杂   tar   递归   ret   carray   成功   

基本思想:

说明:元素必须是有序的,如果是无序的则要先进行排序操作。

也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。

普通实现:

   public static int BinarySearch(int srcArray[], int key) {  
        int mid;  
        int start = 0;  
        int end = srcArray.length - 1;  
        while (start <= end) {  
            mid = (end - start) / 2 + start;  
            if (key < srcArray[mid]) {  
                end = mid - 1;  
            } else if (key > srcArray[mid]) {  
                start = mid + 1;  
            } else {  
                return mid;  
            }  
        }  
        return -1;  
    }  

递归实现:

  public static int BinarySearch(int srcArray[], int start, int end, int key) {  
        int mid = (end - start) / 2 + start;  
        if (srcArray[mid] == key) {  
            return mid;  
        }  
        if (start >= end) {  
            return -1;  
        } else if (key > srcArray[mid]) {  
            return binSearch(srcArray, mid + 1, end, key);  
        } else if (key < srcArray[mid]) {  
            return binSearch(srcArray, start, mid - 1, key);  
        }  
        return -1;  
    }  

算法分析:

  • 时间复杂度:O(log2n)

二分查找的基本思想是将n个元素分成大致相等的两部分,去a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
时间复杂度无非就是while循环的次数!
总共有n个元素
渐渐跟下去就是n,n/2,n/4,....n/2^k,其中k就是循环的次数
由于你n/2^k取整后>=1
即令n/2^k=1
可得k=log2n,(是以2为底,n的对数)
所以时间复杂度可以表示O()=O(log2n)

  • 空间复杂度:O(1)

查找(一)二分查找

标签:次数   ....   ins   复杂   tar   递归   ret   carray   成功   

原文:https://www.cnblogs.com/amei0/p/8283805.html

(0)
(0)
   
举报
评论 一句话评论(0
0条  
登录后才能评论!
© 2014 bubuko.com 版权所有 鲁ICP备09046678号-4
打开技术之扣,分享程序人生!
             

鲁公网安备 37021202000002号