首页 > 其他 > 详细

[ZOJ3435]Ideal Puzzle Bobble

时间:2018-01-15 23:28:44      阅读:231      评论:0      收藏:0      [点我收藏+]

题面戳我
题意:你现在处于\((1,1,1)\),问可以看见多少个第一卦限的整点。
第一卦限:就是\((x,y,z)\)\(x,y,z\)均为正

sol

首先L--,W--,H--,然后答案就变成了
\[\sum_{i=1}^{L}\sum_{j=1}^{W}\sum_{k=1}^{H}[\gcd(i,j,k)==1]+\sum_{i=1}^{L}\sum_{j=1}^{W}[\gcd(i,j)==1]\]
\[+\sum_{i=1}^{L}\sum_{j=1}^{H}[\gcd(i,j)==1]+\sum_{i=1}^{W}\sum_{j=1}^{H}[\gcd(i,j)==1]+3\]
(加三是因为还有\((0,0,1),(0,1,0),(1,0,0)\)三个点)
所以直接做就行了。
第一个式子看上去有三个\(\sum\),但套路还是一样的,可以化成\[\sum_{i=1}^{\min(L,W,H)}\mu(i)\lfloor\frac Li\rfloor\lfloor\frac Wi\rfloor\lfloor\frac Hi\rfloor\]
数论分块走一波

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 1000000;
int pri[N+5],tot,zhi[N+5],mu[N+5],L,W,H;
void Mobius()
{
    zhi[1]=mu[1]=1;
    for (int i=2;i<=N;i++)
    {
        if (!zhi[i]) pri[++tot]=i,mu[i]=-1;
        for (int j=1;j<=tot&&i*pri[j]<=N;j++)
        {
            zhi[i*pri[j]]=1;
            if (i%pri[j]) mu[i*pri[j]]=-mu[i];
            else break;
        }
    }
    for (int i=1;i<=N;i++) mu[i]+=mu[i-1];
}
ll calc(int n,int m)
{
    int i=1;ll res=0;
    while (i<=n&&i<=m)
    {
        int j=min(n/(n/i),m/(m/i));
        res+=1ll*(n/i)*(m/i)*(mu[j]-mu[i-1]);
        i=j+1;
    }
    return res;
}
int main()
{
    Mobius();
    while (scanf("%d %d %d",&L,&W,&H)!=EOF)
    {
        L--,W--,H--;
        ll ans=0;int i=1;
        while (i<=L&&i<=W&&i<=H)
        {
            int j=min(L/(L/i),min(W/(W/i),H/(H/i)));
            ans+=1ll*(L/i)*(W/i)*(H/i)*(mu[j]-mu[i-1]);
            i=j+1;
        }
        printf("%lld\n",ans+calc(L,W)+calc(L,H)+calc(W,H)+3);
    }
    return 0;
}

[ZOJ3435]Ideal Puzzle Bobble

原文:https://www.cnblogs.com/zhoushuyu/p/8290056.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!