首页 > 其他 > 详细

CodeForces 444C. DZY Loves Physics(枚举+水题)

时间:2014-07-08 13:41:30      阅读:372      评论:0      收藏:0      [点我收藏+]

转载请注明出处:http://blog.csdn.net/u012860063/article/details/37509207

题目链接:http://codeforces.com/contest/445/problem/C



DZY Loves Physics


DZY loves Physics, and he enjoys calculating density.

Almost everything has density, even a graph. We define the density of a non-directed graph (nodes and edges of the graph have some values) as follows:

bubuko.com,布布扣
where v is the sum of the values of the nodes, e is the sum of the values of the edges.

Once DZY got a graph G, now he wants to find a connected induced subgraph G of the graph, such that the density of G is as large as possible.

An induced subgraph G‘(V‘,?E‘) of a graph G(V,?E) is a graph that satisfies:

  • bubuko.com,布布扣;
  • edge bubuko.com,布布扣 if and only if bubuko.com,布布扣, and edge bubuko.com,布布扣;
  • the value of an edge in G is the same as the value of the corresponding edge in G, so as the value of a node.

Help DZY to find the induced subgraph with maximum density. Note that the induced subgraph you choose must be connected.

bubuko.com,布布扣
Input

The first line contains two space-separated integers n (1?≤?n?≤?500)bubuko.com,布布扣. Integer n represents the number of nodes of the graph Gm represents the number of edges.

The second line contains n space-separated integers xi (1?≤?xi?≤?106), where xi represents the value of the i-th node. Consider the graph nodes are numbered from 1 to n.

Each of the next m lines contains three space-separated integers ai,?bi,?ci (1?≤?ai?<?bi?≤?n; 1?≤?ci?≤?103), denoting an edge between node ai and bi with value ci. The graph won‘t contain multiple edges.

Output

Output a real number denoting the answer, with an absolute or relative error of at most 10?-?9.

Sample test(s)
input
1 0
1
output
0.000000000000000
input
2 1
1 2
1 2 1
output
3.000000000000000
input
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
output
2.965517241379311
Note

In the first sample, you can only choose an empty subgraph, or the subgraph containing only node 1.

In the second sample, choosing the whole graph is optimal.


题意:   给出一个源图, 要求寻找一个密度(点的值/边的值)最大的子图;

当然子图有三个要满足的要求!

思路:枚举每天边,及其端点的值。为什么这就是最大密度的子图呢?

因为子图必然是由很多边和端点所组成的,而想要最大密度的子图,必然子图中其中的一条边的密度是最大的(至少不会小于子图的总密度),这样只需要找出密度最大的边就是答案!(纯属绰见);


好吧,昨晚我承认自己煞笔了, 没有做出来这道大水题!

代码如下:

#include <cstdio>
#define N 517
double MAX(double a, double b)
{
	return a>b?a:b;
}
int main()
{
	int n, m;
	int x[N];
	int a, b, c;
	while(~scanf("%d%d",&n,&m))
	{
		int i, j;
		for(i = 1; i <= n; i++)
		{
			scanf("%d",&x[i]);
		}
		double max = 0, t;
		for(i = 1; i <= m; i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			t =(double) (x[a]+x[b])/c;
			max = MAX(max, t);
		}
		printf("%.15f\n",max);
	}
	return 0;
}


CodeForces 444C. DZY Loves Physics(枚举+水题),布布扣,bubuko.com

CodeForces 444C. DZY Loves Physics(枚举+水题)

原文:http://blog.csdn.net/u012860063/article/details/37509207

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!