首页 > Web开发 > 详细

Lecture 14:Radial Basis Function Network

时间:2018-01-21 18:03:16      阅读:237      评论:0      收藏:0      [点我收藏+]

Lecture 14:Radial Basis Function Network

14.1 RBF Network Hypothesis

技术分享图片

                                 图  14-1 RBF network

      从图 14 -1 中可以看出,RBF NNet 没啥特色。就是用 RBF 核作为激活函数。为什么还要 RBF NNet 呢?难道是大家公认 RBF 核很好?数学公式多了去,岂不是有无穷多个 NNet 呢。

需要参考 RBF神经网络和BP神经网络有什么区别? 。

       首先 RBF NNet 计算速度很快。因为 RBF NNet 真的只有 3 层,图 14-1 的右半图是真的啊不是表意的啊(图 14-1 的左半图是表意的啊,不一定是 3 层啊啊)。

其次, 在生物学中有这样的结论:"大脑里的神经元就是这么工作的。你闻到花香的时候,不会刺激到感受辣味的神经元"。RBF 算是局部激活函数,离记忆点越近越容易被激活。

技术分享图片

                                              图  14-2

14.2 RBF Network Learning

     本小节的内容,基本上是在讨论为什么不用 Full RBF NNet以及 Full RBF NNet 的特性。后面很自然地引出第 3 小节的内容

 

14.3 k-Means Algorithm

 

14.4 k-Means and RBF Network in Action

 

题外话:

 T1: CNN 、RBF NNet 这些 NNet 都包含着生物学意义,其它的 NNet 也应该包含着一定的意义!

 

Lecture 14:Radial Basis Function Network

原文:https://www.cnblogs.com/tmortred/p/8324735.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!