首页 > 其他 > 详细

The Great Mixing

时间:2018-01-27 22:57:46      阅读:235      评论:0      收藏:0      [点我收藏+]

Sasha and Kolya decided to get drunk with Coke, again. This time they have k types of Coke. i-th type is characterised by its carbon dioxide concentration 技术分享图片. Today, on the party in honour of Sergiy of Vancouver they decided to prepare a glass of Coke with carbon dioxide concentration 技术分享图片. The drink should also be tasty, so the glass can contain only integer number of liters of each Coke type (some types can be not presented in the glass). Also, they want to minimize the total volume of Coke in the glass.

Carbon dioxide concentration is defined as the volume of carbone dioxide in the Coke divided by the total volume of Coke. When you mix two Cokes, the volume of carbon dioxide sums up, and the total volume of Coke sums up as well.

Help them, find the minimal natural number of liters needed to create a glass with carbon dioxide concentration 技术分享图片. Assume that the friends have unlimited amount of each Coke type.

Input

The first line contains two integers n, k (0 ≤ n ≤ 1000, 1 ≤ k ≤ 106) — carbon dioxide concentration the friends want and the number of Coke types.

The second line contains k integers a1, a2, ..., ak (0 ≤ ai ≤ 1000) — carbon dioxide concentration of each type of Coke. Some Coke types can have same concentration.

Output

Print the minimal natural number of liter needed to prepare a glass with carbon dioxide concentration 技术分享图片, or -1 if it is impossible.

Example
Input
400 4
100 300 450 500
Output
2
Input
50 2
100 25
Output
3
Note

In the first sample case, we can achieve concentration 技术分享图片 using one liter of Coke of types 技术分享图片 and 技术分享图片: 技术分享图片.

In the second case, we can achieve concentration 技术分享图片 using two liters of 技术分享图片 type and one liter of 技术分享图片 type: 技术分享图片.

广搜,(a1+a2+...+am)/m == n;a1+a2+...+am = n * m;a1-n+a2-n+...am-n == 0;如此ai-n变为要存的值,节省了数组的空间。

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
int visited[1005],ans[2010];
int n,k,s[1005],no;
int bfs()
{
    memset(ans,-1,sizeof(ans));
    queue<int> q;
    q.push(0);
    ans[0] = 0;
    int head,temp;
    while(!q.empty())
    {
        head = q.front();
        q.pop();
        for(int i = 0;i < no;i ++)
        {
            temp = head + s[i];
            if(temp == 0)
            {
                ans[temp] = ans[head] + 1;
                return ans[temp];
            }
            else if(temp > 0 && ans[temp] == -1)
            {
                ans[temp] = ans[head] + 1;
                q.push(temp);
            }
        }
    }
    return -1;
}
int main()
{
    int d;
    scanf("%d%d",&n,&k);
    for(int i = 0;i < k;i ++)
    {
        scanf("%d",&d);
        if(visited[d] == 0)
        {
            visited[d] = 1;
            s[no ++] = d - n;
        }
    }
    cout<<bfs();
    return 0;
}

 

The Great Mixing

原文:https://www.cnblogs.com/8023spz/p/8367432.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!