首页 > 其他 > 详细

2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

时间:2014-02-09 22:21:20      阅读:379      评论:0      收藏:0      [点我收藏+]

随机偏微分方程

 

Throughout this section, let (\Omega, \calF, \calF_t,\ P)(Ω,F,Fbubuko.com,布布扣tbubuko.com,布布扣, P)bubuko.com,布布扣 be a complete filtered probability space satisfying the usual conditions.  

1. Recall the following results:  

a)         The Doob maximal inequality: if (N_t)(Nbubuko.com,布布扣tbubuko.com,布布扣)bubuko.com,布布扣 is a non-negative \calF_tFbubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣 -submartingale with N_0=0Nbubuko.com,布布扣0bubuko.com,布布扣=0bubuko.com,布布扣 , then for 1<p<\infty1<p<bubuko.com,布布扣 , \bex E\sez{\sup_{0\leq t\leq T}\sev{N_t}^p} \leq \sex{\frac{p}{p-1}}^p E\sez{\sev{N_T}^p}. \eex

E[supbubuko.com,布布扣0tTbubuko.com,布布扣|Nbubuko.com,布布扣tbubuko.com,布布扣|bubuko.com,布布扣pbubuko.com,布布扣](pbubuko.com,布布扣p?1bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣pbubuko.com,布布扣E[|Nbubuko.com,布布扣Tbubuko.com,布布扣|bubuko.com,布布扣pbubuko.com,布布扣].bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

b)        The set \calSSbubuko.com,布布扣 of simple processes is dense in the Hilbert space \sex{\calH,\ \sen{\cdot}_{\calH}}(H, ?bubuko.com,布布扣Hbubuko.com,布布扣)bubuko.com,布布扣 , where \bex \calS:=\left\{\xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t):\ 0=t_0<t_1<\cdots<t_n\leq T,\right.\\ \left.\xi_k\in\calF_{t_k},\ \sup_k\sen{\xi_k}_\infty<\infty\right\}, \eex

S:={ξbubuko.com,布布扣tbubuko.com,布布扣=bubuko.com,布布扣k=0bubuko.com,布布扣nbubuko.com,布布扣ξbubuko.com,布布扣kbubuko.com,布布扣χbubuko.com,布布扣[tbubuko.com,布布扣kbubuko.com,布布扣,tbubuko.com,布布扣k+1bubuko.com,布布扣]bubuko.com,布布扣(t): 0=tbubuko.com,布布扣0bubuko.com,布布扣<tbubuko.com,布布扣1bubuko.com,布布扣<?<tbubuko.com,布布扣nbubuko.com,布布扣T,bubuko.com,布布扣ξbubuko.com,布布扣kbubuko.com,布布扣Fbubuko.com,布布扣tbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣, supbubuko.com,布布扣kbubuko.com,布布扣ξbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<},bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
and \bex \calH:=\left\{H:\ [0,T]\times\Omega \to \bbR \mbox{ is continuous and } \calF_t\mbox{-adapted}:\right.\\ \left. \sen{H}_{\calH}^2 := E\sez{\int_0^T\sev{H(s)}^2\rd s}<\infty\right\}. \eex
 Set \bex \calM:=\left\{ M=(M_t)_{t\in [0,T]} \mbox{ is continuous } \calF_t\mbox{-martingales such that } \right.\\ \left. \sen{M}_\calM^2 :=\sup_{0\leq t\leq T} E\sez{\sev{M_t}^2} <+\infty \right\}. \eex
Then (\calM,\sen{\cdot}_\calM) is a Hilbert space.  Let \xi:\ [0,T]\times \Omega\to \bbR be the simple process given by \bex \xi_t=\sum_{k=0}^n \xi_k\chi_{[t_k,t_{k+1}]}(t), \eex
where 0=t_0<t_1<\cdots<t_n=T , and \xi_k\in \calF_{t_k} such that \dps{\sup_k \sev{\xi_k}<\infty} . Define \bex M_t=\int_0^t\xi_k\rd W_s :=\sum_{k=0}^n \xi_k\sex{W_{t_{k+1}\wedge t-W_{t_k\wedge t}}}, \eex
 

a)          Prove that M_t is a continuous \calF_t -martingale.

b)         Prove the It\^o‘s isometry identity: \bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex

c)        Using the Doob maximal inequality, prove that \bex E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd s}. \eex

d)        Given H\in \calH , let H_n\in \calS be a sequence such that \sen{H_n-H}_{\calH}\to 0 as n\to\infty . Prove that \dps{M_t^n =\int_0^t H_n(s)\rd W_s} is a Cauchy sequence in \sex{\calM,\sen{\cdot}_\calM} . Let M be the limit of \sed{M_n(t);\ t\in [0,T]} in \sex{\calM,\sen{\cdot}_\calM} . Prove that this limit does not depend on the choice of the sequence H_n which tends to H in \sex{\calH,\sen{\cdot}_\calH} . Denote by \dps{M_t:=\int_0^t H(s)\rd W_s} , i.e. \bex \int_0^t H(s)\rd W_s =\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in } \sex{\calM,\sen{\cdot}_\calM}. \eex

e)         Prove that \dps{M_t=\int_0^t H(s)\rd W_s} is a \calF_t -martingale and satisfies \bex E\sez{\sev{M_t}^2} = E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex

and \bex E\sez{\sup_{0\leq t\leq T}\sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{H(s)}^2\rd s}. \eex

f)         Using the Borel-Cantelli lemma, prove that P -a.s., M=(M_t)\in C([0,T];\bbR) .

 

2. Consider the following SDE on \bbR^m : \bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x, \eex

where V\in C_b^2(\bbR^m) . Fix T>0 . Suppose that u(t,x)\in C_b^{1,2}([0,T]\times\bbR^m,\bbR) is a solution of the heat equation \bex \left\{\ba{ll} \frac{\p u}{\p t}(t,x) =\frac{1}{2}\lap u(t,x) -\sef{\n V(x),\n u(t,x)},&\mbox{in }[0,T)\times \bbR^m,\\ u(0,x)=f(x),&x\in \bbR^m, \ea\right. \eex
where f\in C_b(\bbR^m) . Applying It\^o‘s formula to u(T-t,X_t) , prove that \bex u(t,x)= E_x\sez{f(X_t)},\quad \forall\ t\geq 0,\ x\in \bbR^m. \eex
 

 

3. Consider the following SPDE on [0,T]\times S^1 : \bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot W(t,x), \eee

where t\in [0,\infty) and x\in S^1=[0,2\pi] , \dps{\lap=\frac{\p^2}{\p x^2}} is the Laplace operator on S^1 , and W(t,x) is the space-time white noise on [0,\infty)\times S^1 .  Recall that \lap is a compact operator on L^2(S^1,\rd x) and the spectral of \lap is given by \bex \mbox{Sp}(\lap)=\sed{-n^2;\ n\in \bbN}. \eex
Indeed, let \bex e_{2n}(x)=\frac{1}{\sqrt{\pi}}\cos(nx),\quad e_{2n+1}(x)=\frac{1}{\sqrt{\pi}} \sin (nx),\quad n\in\bbN,\ x\in S^1. \eex
 Then \bex \lap e_{2n}=-n^2 e_{2n},\quad \lap e_{2n+1}=-n^2e_{2n+1},\quad \forall\ n\in\bbN. \eex
The set \sed{e_n} consists of a complete orthonormal basis of L^2(S^1,\rd x) . Write \bex W(t,x)=\sum_{n=1}^\infty W_n(t)e_n(x), \eex
where W_n(t) are i.i.d Brownian motion on \bbR^1 .

(a) Let \bex X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex

Prove that X_t satisfies the Ornstein-Uhlenbeck SDE on L^2(S^1,\rd x) : \bex \rd X_t=\lap X_t+\rd W_t, \eex
and \dps{W_t=\sum_{n=0}^\infty W_n(t)e_n} is the cylinder Brownian motion on L^2(S^1,\rd x) .  

(b) Let \dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)} be the orthogonal decomposition of u(t,\cdot) in L^2(S^1,\rd x) . Prove that u_n(t) satisfies the Langevin SDE on \bbR : \bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t), \eex

and solve this Langevin SDE with initial condition u_n(0)=u_n\in \bbR .  

? Find the mild solution to the SPDE \eqref{1} with initial condition \dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)} for \dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty} .  

(d) Recall that the domain of \lap is given by \bex H_0=\left\{u=\sum_{n=1}^\infty u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and } \sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex

Let \bex \rd \mu(u)=\prod_{n=1}^\infty \frac{n}{\sqrt{2\pi}} \mbox{exp}\sez{-\frac{n^2\sev{u_n}^2}{2}}\rd u_n. \eex
Prove that \mu is a Gaussian measure on (H,\calB(H)) with mean zero and with covariance matrix Q=\sex{q_{ij}}_{\bbN\times\bbN} with \bex q_{ij}=\frac{1}{i^2}\delta_{ij}, \eex
i.e., \mu=\calN(0,Q) .  Formally we write \bex Q=\sex{-\lap}^{-1},\quad \mu=\calN(0,\sex{-\lap}^{-1}). \eex

(e) Prove that \mu is an invariant measure for the Ornstein-Uhlenbeck processs X_t on L^2(S^1,\rd x) .  

(f) (Not required) Prove that \mu is the unique invariant measure for the Ornstein-Uhlenbeck process X_t on L^2(S^1,\rd x) .  

 

可压 Navier-Stokes 方程

 

1. Consider the compressible fluid flow with damping: \bex \left\{\ba{ll} \p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n p=-\rho\bbu. \ea\right. \eex

Can this system satisfy Kawashima‘s condition?

2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.

3. Give the details of the proof of Lemma 3.1.

4. Give the details of the proof of Theorem 5.3.

5. Give the complete proof of Lemmas 6.4 and 6.5.

 

几何分析

1.(15‘) 设 R(X,Y):\ \calX(M)\to \calX(M) 为曲率, 求证:  

(1) R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2 ,  \forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M) ;

(2) R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0 ,  \forall\ X,Y,Z\in \calX(M) .  

 

2.(10‘) 设 V(t),\ J(t) 是沿最短测地线 \gamma(t),\ t\in [0,1] 的向量场, 它们满足 \bex V(t)\perp \dot\gamma(t),\quad J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex

J(t) 是 Jacobi 场, 求证: \bex I(J,J)\leq I(V,V), \eex
其中 I \gamma 上的指标形式.  

 

3.(10‘) 设 \gamma(t):\ (-\infty,+\infty)\to M 为一条测地直线, 相应地记 \bex \gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex

及两 Busemann 函数 \bex B_{\gamma_+}(x)=\lim_{t\to+\infty}\sez{d(x,\gamma(t))-t}; \eex
\bex B_{\gamma_-}(x)=\lim_{t\to-\infty}\sez{d(x,\gamma(t))+t}. \eex
求证: \bex B_{\gamma_+}+B_{\gamma_-}=0,\quad\mbox{在 } \gamma \mbox{ 上}; \eex
\bex B_{\gamma_+}+B_{\gamma_-}\geq 0,\quad\mbox{在 } M \mbox{ 上}. \eex
 

 

4.(15‘) 设 M 为紧流形, 再设 g_{ij}(t) 满足 Ricci 流, 且 f(t),\tau(t) 满足 \bex \frac{\p }{\p t}f=-\lap f+\sev{\n f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex

求证:  

(1) \bex \frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd vol_{g_{ij}}=0; \eex

(2) \bex & &\frac{\rd }{\rd x}\int_M  \sez{\tau \sex{R+\sev{\n f}^2} +f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M 2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}. \eex

 

 

来源: 家里蹲大学数学杂志第2卷第49期_2011广州暑期班试题---随机PDE-可压NS-几何

2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

原文:http://www.cnblogs.com/zhangzujin/p/3541856.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!