随机偏微分方程
Throughout this section, let (\Omega,
\calF, \calF_t,\ P)
1. Recall the following results:
a) The
Doob maximal inequality: if (N_t)
b)
The set \calS
a) Prove that M_t is a continuous \calF_t -martingale.
b)
Prove the It\^o‘s isometry identity: \bex
E\sez{\sev{M_t}^2} = E\sez{\int_0^t\sev{\xi_s}^2\rd s}. \eex
c)
Using the Doob maximal inequality, prove that \bex
E\sez{\sup_{0\leq t\leq T} \sev{M_t}^2} \leq 4 E\sez{\int_0^T \sev{\xi_s}^2\rd
s}. \eex
d)
Given H\in \calH
, let H_n\in \calS
be a sequence such that \sen{H_n-H}_{\calH}\to
0
as n\to\infty
. Prove that \dps{M_t^n =\int_0^t H_n(s)\rd
W_s}
is a Cauchy sequence in \sex{\calM,\sen{\cdot}_\calM}
. Let M
be the limit of \sed{M_n(t);\ t\in
[0,T]}
in \sex{\calM,\sen{\cdot}_\calM}
. Prove that this limit does not depend on the choice of the sequence H_n
which tends to H
in \sex{\calH,\sen{\cdot}_\calH}
. Denote by \dps{M_t:=\int_0^t H(s)\rd
W_s}
, i.e. \bex \int_0^t H(s)\rd W_s
=\lim_{n\to\infty} \int_0^t H_n(s)\rd W_s,\mbox{ in }
\sex{\calM,\sen{\cdot}_\calM}. \eex
e)
Prove that \dps{M_t=\int_0^t H(s)\rd
W_s}
is a \calF_t
-martingale and satisfies \bex E\sez{\sev{M_t}^2}
= E\sez{\int_0^t \sev{H(s)}^2\rd s}, \eex
f) Using the Borel-Cantelli lemma, prove that P -a.s., M=(M_t)\in C([0,T];\bbR) .
2. Consider the following SDE on \bbR^m
: \bex \rd X_t=\rd W_t-\n V(X_t)\rd t,\quad X_0=x,
\eex
3. Consider the following SPDE on [0,T]\times
S^1
: \bee\label{1} \frac{\p}{\p t}u(t,x) =\lap u+\dot
W(t,x), \eee
(a) Let \bex
X_t(\cdot) =u(t,\cdot)\in L^2(S^1,\rd x). \eex
(b) Let \dps{u(t,x)=\sum_{n\in \bbN} u_n(t)e_n(x)}
be the orthogonal decomposition of u(t,\cdot)
in L^2(S^1,\rd x)
. Prove that u_n(t)
satisfies the Langevin SDE on \bbR
: \bex \rd u_n(t)=-n^2 u_n(t)\rd t+\rd W_n(t),
\eex
? Find the mild solution to the SPDE \eqref{1} with initial condition \dps{u(0,x)=\sum_{n=0}^\infty u_ne_n(x)} for \dps{\sum_{n=0}^\infty \sev{u_n}^2<+\infty} .
(d) Recall that the domain of \lap
is given by \bex H_0=\left\{u=\sum_{n=1}^\infty
u_ne_n\in L^2(S^1,\rd x);\ u_n=\sef{u,e_n},\right.\\ \left.\mbox{ and }
\sum_{n=1}^\infty n^2 \sev{u_n}^2<\infty\right\} . \eex
(e) Prove that \mu is an invariant measure for the Ornstein-Uhlenbeck processs X_t on L^2(S^1,\rd x) .
(f) (Not required) Prove that \mu is the unique invariant measure for the Ornstein-Uhlenbeck process X_t on L^2(S^1,\rd x) .
可压 Navier-Stokes 方程
1. Consider the compressible fluid flow with
damping: \bex \left\{\ba{ll}
\p_t\rho+\Div(\rho\bbu)=0,\\ \p_t(\rho\bbu)+\Div\sex{\rho\bbu\otimes\bbu} +\n
p=-\rho\bbu. \ea\right. \eex
2. Follow the similar analysis for Lemma 2.1 to prove (2.18) in Proposition 2.2.
3. Give the details of the proof of Lemma 3.1.
4. Give the details of the proof of Theorem 5.3.
5. Give the complete proof of Lemmas 6.4 and 6.5.
几何分析
1.(15‘) 设 R(X,Y):\ \calX(M)\to \calX(M) 为曲率, 求证:
(1) R(X,Y)(fZ_1+gZ_2) =fR(X,Y)Z_1+gR(X,Y)Z_2 , \forall\ X,Y,Z_1,Z_2\in \calX(M), f,h\in C^\infty (M) ;
(2) R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0 , \forall\ X,Y,Z\in \calX(M) .
2.(10‘) 设 V(t),\
J(t)
是沿最短测地线 \gamma(t),\ t\in [0,1]
的向量场, 它们满足 \bex V(t)\perp \dot\gamma(t),\quad
J(t)\perp \dot\gamma(t),\quad V(0)=J(0),\quad V(1)=J(1), \eex
3.(10‘) 设 \gamma(t):\ (-\infty,+\infty)\to M
为一条测地直线, 相应地记 \bex
\gamma_+=\gamma|_{[0,+\infty)},\quad \gamma_-=\gamma|_{(-\infty,0]} \eex
4.(15‘) 设 M
为紧流形, 再设 g_{ij}(t)
满足 Ricci 流, 且 f(t),\tau(t)
满足 \bex \frac{\p }{\p t}f=-\lap f+\sev{\n
f}^2-R+\frac{n}{2\tau},\quad \frac{\p }{\p t}\tau =-1. \eex
(1) \bex
\frac{\rd}{\rd t}\int_M \sex{4\pi \tau}^{-\frac{n}{2}} e^{-f}\, \rd
vol_{g_{ij}}=0; \eex
(2) \bex &
&\frac{\rd }{\rd x}\int_M \sez{\tau \sex{R+\sev{\n f}^2}
+f-n}(4\pi^\tau)^{-\frac{n}{2}} e^{-f}\,\rd vol_{g_{ij}}\\ & &=\int_M
2\tau \sev{R_{ij}+\n_i\n_j f-\frac{1}{2\tau}g_{ij}}^2 (4\pi \tau)^{-\frac{n}{2}}
e^{-f}\,\rd vol_{g_{ij}}. \eex
来源: 家里蹲大学数学杂志第2卷第49期_2011广州暑期班试题---随机PDE-可压NS-几何
2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
原文:http://www.cnblogs.com/zhangzujin/p/3541856.html