首页 > 其他 > 详细

NYOJ 311 完全背包

时间:2014-07-11 11:48:48      阅读:305      评论:0      收藏:0      [点我收藏+]

完全背包

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
 
描述

直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO

 
输入
第一行: N 表示有多少组测试数据(N<7)。 
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO)
样例输入
2
1 5
2 2
2 5
2 2
5 1
样例输出
NO
1
上传者
ACM_赵铭浩

解题:RT


bubuko.com,布布扣
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #include <vector>
 6 #include <climits>
 7 #include <algorithm>
 8 #include <cmath>
 9 #define LL long long
10 using namespace std;
11 const int INF = INT_MAX>>2;
12 int c[2001],w[2001],dp[50001];
13 int main(){
14     int kase,n,i,j,v,k;
15     scanf("%d",&kase);
16     while(kase--){
17         scanf("%d %d",&n,&v);
18         for(i = 1; i <= n; i++)
19             scanf("%d %d",c+i,w+i);
20         for(i = 0; i <= v; i++)
21             dp[i] = -INF;
22         dp[0] = 0;
23         for(i = 1; i <= n; i++){
24             for(j = c[i]; j <= v; j++)
25                 if(dp[j] < dp[j-c[i]]+w[i]) dp[j] = dp[j-c[i]]+w[i];
26         }
27         if(dp[v] > 0){
28             printf("%d\n",dp[v]);
29         }else puts("NO");
30     }
31     return 0;
32 }
View Code

 

NYOJ 311 完全背包,布布扣,bubuko.com

NYOJ 311 完全背包

原文:http://www.cnblogs.com/crackpotisback/p/3833968.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!