| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 5290 | Accepted: 1843 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is
. However, if you drop the third test, your cumulative average becomes
.
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
Source
题目大意就 给定n个二元组(a,b),扔掉k个二元组,使得剩下的a元素之和与b元素之和的比率最大,以下 是复制自其它人的博客
题目求的是 max(∑a[i] * x[i] / (b[i] * x[i])) 其中a,b都是一一对应的。 x[i]取0,1 并且 ∑x[i] = n - k;
转:那么可以转化一下。 令r = ∑a[i] * x[i] / (b[i] * x[i]) 则必然∑a[i] * x[i] - ∑b[i] * x[i] * r= 0;(条件1)
并且任意的 ∑a[i] * x[i] - ∑b[i] * x[i] * max(r) <= 0 (条件2,只有当∑a[i] * x[i] / (b[i] * x[i]) = max(r) 条件2中等号才成立)
然后就可以枚举r , 对枚举的r, 求Q(r) = ∑a[i] * x[i] - ∑b[i] * x[i] * r 的最大值, 为什么要求最大值呢? 因为我们之前知道了条件2,所以当我们枚举到r为max(r)的值时,显然对于所有的情况Q(r)都会小于等于0,并且Q(r)的最大值一定是0.而我们求最大值的目的就是寻找Q(r)=0的可能性,这样就满足了条件1,最后就是枚举使得Q(r)恰好等于0时就找到了max(r)。而如果能Q(r)>0 说明该r值是偏小的,并且可能存在Q(r)=0,而Q(r)<0的话,很明显是r值偏大的,因为max(r)都是使Q(r)最大值为0,说明不可能存在Q(r)=0了。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#define eqs 1e-8
#define N 1100
using namespace std;
double a[N],b[N],c[N];
int n,k;
bool cmp(const double &p1,const double &p2)
{
return p1<p2;
}
int main()
{
//freopen("data.in","r",stdin);
double binary_search(double l,double r);
while(scanf("%d %d",&n,&k)!=EOF)
{
if(n==0&&k==0)
{
break;
}
for(int i=0;i<=n-1;i++)
{
scanf("%lf",&a[i]);
}
for(int i=0;i<=n-1;i++)
{
scanf("%lf",&b[i]);
}
double ans = binary_search(0,1);
printf("%.0lf\n",ans*100);
}
return 0;
}
double binary_search(double l,double r)
{
double mid;
while(r-l>eqs)
{
mid = (r+l)/2;
for(int i=0;i<=n-1;i++)
{
c[i] = a[i] - b[i]*mid;
}
sort(c,c+n,cmp);
double sum = 0;
for(int i=k;i<=n-1;i++)
{
sum+=c[i];
}
if(sum>0)
{
l = mid;
}else
{
r = mid;
}
}
return mid;
}
原文:http://blog.csdn.net/yongxingao/article/details/19016267