最近工作上忙死了……广播变量这一块其实早就看过了,一直没有贴出来。
本文基于Spark 1.0源码分析,主要探讨广播变量的初始化、创建、读取以及清除。
BroadcastManager类中包含一个BroadcastFactory对象的引用。大部分操作通过调用BroadcastFactory中的方法来实现。
BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory、HttpBroadcastFactory。这两个子类实现了对HttpBroadcast、TorrentBroadcast的封装,而后面两个又同时集成了Broadcast抽象类。
图……就不画了
SparkContext初始化时会创建SparkEnv对象env,这个过程中会调用BroadcastManager的构造方法返回一个对象作为env的成员变量存在:
val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
构造BroadcastManager对象时会调用initialize方法,主要根据配置初始化broadcastFactory成员变量,并调用其initialize方法。
val broadcastFactoryClass = conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.HttpBroadcastFactory") broadcastFactory = Class.forName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory] // Initialize appropriate BroadcastFactory and BroadcastObject broadcastFactory.initialize(isDriver, conf, securityManager)
两个工厂类的initialize方法都是对其相应实体类的initialize方法的调用,下面分开两个类来看。
def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) { synchronized { if (!initialized) { bufferSize = conf.getInt("spark.buffer.size", 65536) compress = conf.getBoolean("spark.broadcast.compress", true) securityManager = securityMgr if (isDriver) { createServer(conf) conf.set("spark.httpBroadcast.uri", serverUri) } serverUri = conf.get("spark.httpBroadcast.uri") cleaner = new MetadataCleaner(MetadataCleanerType.HTTP_BROADCAST, cleanup, conf) compressionCodec = CompressionCodec.createCodec(conf) initialized = true } } }
除了一些变量的初始化外,主要做两件事情,一是createServer(只有在Driver端会做),其次是创建一个MetadataCleaner对象。
private def createServer(conf: SparkConf) { broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf)) server = new HttpServer(broadcastDir, securityManager) server.start() serverUri = server.uri logInfo("Broadcast server started at " + serverUri) }
首先创建一个存放广播变量的目录,默认是
conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(',')(0)
然后初始化一个HttpServer对象并启动(封装了jetty),启动过程中包括加载资源文件,起端口和线程用来监控请求等。这部分的细节在org.apache.spark.HttpServer类中,此处不做展开。
一个MetadataCleaner对象包装了一个定时计划Timer,每隔一段时间执行一个回调函数,此处传入的回调函数为cleanup:
private def cleanup(cleanupTime: Long) { val iterator = files.internalMap.entrySet().iterator() while(iterator.hasNext) { val entry = iterator.next() val (file, time) = (entry.getKey, entry.getValue) if (time < cleanupTime) { iterator.remove() deleteBroadcastFile(file) } } }
即清楚存在吵过一定时长的broadcast文件。在时长未设定(默认情况)时,不清除:
if (delaySeconds > 0) { logDebug( "Starting metadata cleaner for " + name + " with delay of " + delaySeconds + " seconds " + "and period of " + periodSeconds + " secs") timer.schedule(task, periodSeconds * 1000, periodSeconds * 1000) }
def initialize(_isDriver: Boolean, conf: SparkConf) { TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests synchronized { if (!initialized) { initialized = true } } }
Torrent在此处没做什么,这也可以看出和Http的区别,Torrent的处理方式就是p2p,去中心化。而Http是中心化服务,需要启动服务来接受请求。
调用SparkContext中的 def broadcast[T: ClassTag](value: T): Broadcast[T]方法来初始化一个广播变量,实现如下:
def broadcast[T: ClassTag](value: T): Broadcast[T] = { val bc = env.broadcastManager.newBroadcast[T](value, isLocal) cleaner.foreach(_.registerBroadcastForCleanup(bc)) bc }
即调用broadcastManager的newBroadcast方法:
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean) = { broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement()) }
再调用工厂类的newBroadcast方法,此处返回的是一个Broadcast对象。
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) = new HttpBroadcast[T](value_, isLocal, id)
即创建一个新的HttpBroadcast对象并返回。
构造对象时主要做两件事情:
HttpBroadcast.synchronized { SparkEnv.get.blockManager.putSingle( blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false) } if (!isLocal) { HttpBroadcast.write(id, value_) }
1.将变量id和值放入blockManager,但并不通知master
2.调用伴生对象的write方法
def write(id: Long, value: Any) { val file = getFile(id) val out: OutputStream = { if (compress) { compressionCodec.compressedOutputStream(new FileOutputStream(file)) } else { new BufferedOutputStream(new FileOutputStream(file), bufferSize) } } val ser = SparkEnv.get.serializer.newInstance() val serOut = ser.serializeStream(out) serOut.writeObject(value) serOut.close() files += file }
write方法将对象值按照指定的压缩、序列化写入指定的文件。这个文件所在的目录即是HttpServer的资源目录,文件名和id的对应关系为:
case class BroadcastBlockId(broadcastId: Long, field: String = "") extends BlockId { def name = "broadcast_" + broadcastId + (if (field == "") "" else "_" + field) }
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) = new TorrentBroadcast[T](value_, isLocal, id)
同样是创建一个TorrentBroadcast对象,并返回。
TorrentBroadcast.synchronized { SparkEnv.get.blockManager.putSingle( broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false) } if (!isLocal) { sendBroadcast() }
做两件事情,第一步和Http一样,第二步:
def sendBroadcast() { val tInfo = TorrentBroadcast.blockifyObject(value_) totalBlocks = tInfo.totalBlocks totalBytes = tInfo.totalBytes hasBlocks = tInfo.totalBlocks // Store meta-info val metaId = BroadcastBlockId(id, "meta") val metaInfo = TorrentInfo(null, totalBlocks, totalBytes) TorrentBroadcast.synchronized { SparkEnv.get.blockManager.putSingle( metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true) } // Store individual pieces for (i <- 0 until totalBlocks) { val pieceId = BroadcastBlockId(id, "piece" + i) TorrentBroadcast.synchronized { SparkEnv.get.blockManager.putSingle( pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true) } } }
可以看出,先将元数据信息缓存到blockManager,再将块信息缓存过去。开头可以看到有一个分块动作,是调用伴生对象的blockifyObject方法:
def blockifyObject[T](obj: T): TorrentInfo
此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象,第一个参数为一个TorrentBlock对象(包含blockID和block字节数组)、块数量以及obj的字节流总长度。
元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。
数据信息是分块缓存,每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象
通过调用bc.value来取得广播变量的值,其主要实现在反序列化方法readObject中
HttpBroadcast.synchronized { SparkEnv.get.blockManager.getSingle(blockId) match { case Some(x) => value_ = x.asInstanceOf[T] case None => { logInfo("Started reading broadcast variable " + id) val start = System.nanoTime value_ = HttpBroadcast.read[T](id) /* * We cache broadcast data in the BlockManager so that subsequent tasks using it * do not need to re-fetch. This data is only used locally and no other node * needs to fetch this block, so we don't notify the master. */ SparkEnv.get.blockManager.putSingle( blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false) val time = (System.nanoTime - start) / 1e9 logInfo("Reading broadcast variable " + id + " took " + time + " s") } } }
首先查看blockManager中是否已有,如有则直接取值,否则调用伴生对象的read方法进行读取:
def read[T: ClassTag](id: Long): T = { logDebug("broadcast read server: " + serverUri + " id: broadcast-" + id) val url = serverUri + "/" + BroadcastBlockId(id).name var uc: URLConnection = null if (securityManager.isAuthenticationEnabled()) { logDebug("broadcast security enabled") val newuri = Utils.constructURIForAuthentication(new URI(url), securityManager) uc = newuri.toURL.openConnection() uc.setAllowUserInteraction(false) } else { logDebug("broadcast not using security") uc = new URL(url).openConnection() } val in = { uc.setReadTimeout(httpReadTimeout) val inputStream = uc.getInputStream if (compress) { compressionCodec.compressedInputStream(inputStream) } else { new BufferedInputStream(inputStream, bufferSize) } } val ser = SparkEnv.get.serializer.newInstance() val serIn = ser.deserializeStream(in) val obj = serIn.readObject[T]() serIn.close() obj }
使用serverUri和block id对应的文件名直接开启一个HttpConnection将中心服务器上相应的数据取过来,使用配置的压缩和序列化机制进行解压和反序列化。
这里可以看到,所有需要用到广播变量值的executor都需要去driver上pull广播变量的内容。
取到值后,缓存到blockManager中,以便下次使用。
private def readObject(in: ObjectInputStream) { in.defaultReadObject() TorrentBroadcast.synchronized { SparkEnv.get.blockManager.getSingle(broadcastId) match { case Some(x) => value_ = x.asInstanceOf[T] case None => val start = System.nanoTime logInfo("Started reading broadcast variable " + id) // Initialize @transient variables that will receive garbage values from the master. resetWorkerVariables() if (receiveBroadcast()) { value_ = TorrentBroadcast.unBlockifyObject[T](arrayOfBlocks, totalBytes, totalBlocks) /* Store the merged copy in cache so that the next worker doesn't need to rebuild it. * This creates a trade-off between memory usage and latency. Storing copy doubles * the memory footprint; not storing doubles deserialization cost. Also, * this does not need to be reported to BlockManagerMaster since other executors * does not need to access this block (they only need to fetch the chunks, * which are reported). */ SparkEnv.get.blockManager.putSingle( broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false) // Remove arrayOfBlocks from memory once value_ is on local cache resetWorkerVariables() } else { logError("Reading broadcast variable " + id + " failed") } val time = (System.nanoTime - start) / 1e9 logInfo("Reading broadcast variable " + id + " took " + time + " s") } } }
和Http一样,都是先查看blockManager中是否已经缓存,若没有,则调用receiveBroadcast方法:
def receiveBroadcast(): Boolean = { // Receive meta-info about the size of broadcast data, // the number of chunks it is divided into, etc. val metaId = BroadcastBlockId(id, "meta") var attemptId = 10 while (attemptId > 0 && totalBlocks == -1) { TorrentBroadcast.synchronized { SparkEnv.get.blockManager.getSingle(metaId) match { case Some(x) => val tInfo = x.asInstanceOf[TorrentInfo] totalBlocks = tInfo.totalBlocks totalBytes = tInfo.totalBytes arrayOfBlocks = new Array[TorrentBlock](totalBlocks) hasBlocks = 0 case None => Thread.sleep(500) } } attemptId -= 1 } if (totalBlocks == -1) { return false } /* * Fetch actual chunks of data. Note that all these chunks are stored in * the BlockManager and reported to the master, so that other executors * can find out and pull the chunks from this executor. */ val recvOrder = new Random().shuffle(Array.iterate(0, totalBlocks)(_ + 1).toList) for (pid <- recvOrder) { val pieceId = BroadcastBlockId(id, "piece" + pid) TorrentBroadcast.synchronized { SparkEnv.get.blockManager.getSingle(pieceId) match { case Some(x) => arrayOfBlocks(pid) = x.asInstanceOf[TorrentBlock] hasBlocks += 1 SparkEnv.get.blockManager.putSingle( pieceId, arrayOfBlocks(pid), StorageLevel.MEMORY_AND_DISK, tellMaster = true) case None => throw new SparkException("Failed to get " + pieceId + " of " + broadcastId) } } } hasBlocks == totalBlocks }
和写数据一样,同样是分成两个部分,首先取元数据信息,再根据元数据信息读取实际的block信息。注意这里都是从blockManager中读取的,这里贴出blockManager.getSingle的分析。
调用栈中最后到BlockManager.doGetRemote方法,中间有一条语句:
val locations = Random.shuffle(master.getLocations(blockId))
即将存有这个block的节点信息随机打乱,然后使用:
val data = BlockManagerWorker.syncGetBlock( GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
来获取。
从这里可以看出,Torrent方法首先将广播变量数据分块,并存到BlockManager中;每个节点需要读取广播变量时,是分块读取,对每一块都读取其位置信息,然后随机选一个存有此块数据的节点进行get;每个节点读取后会将包含的快信息报告给BlockManagerMaster,这样本地节点也成为了这个广播网络中的一个peer。
与Http方式形成鲜明对比,这是一个去中心化的网络,只需要保持一个tracker即可,这就是p2p的思想。
广播变量被创建时,紧接着有这样一句代码:
cleaner.foreach(_.registerBroadcastForCleanup(bc))
cleaner是一个ContextCleaner对象,会将刚刚创建的广播变量注册到其中,调用栈为:
def registerBroadcastForCleanup[T](broadcast: Broadcast[T]) { registerForCleanup(broadcast, CleanBroadcast(broadcast.id)) }
private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask) { referenceBuffer += new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue) }
等出现广播变量被弱引用时(关于弱引用,可以参考:http://blog.csdn.net/lyfi01/article/details/6415726),则会执行
cleaner.foreach(_.start())
start方法中会调用keepCleaning方法,会遍历注册的清理任务(包括RDD、shuffle和broadcast),依次进行清理:
private def keepCleaning(): Unit = Utils.logUncaughtExceptions { while (!stopped) { try { val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT)) .map(_.asInstanceOf[CleanupTaskWeakReference]) reference.map(_.task).foreach { task => logDebug("Got cleaning task " + task) referenceBuffer -= reference.get task match { case CleanRDD(rddId) => doCleanupRDD(rddId, blocking = blockOnCleanupTasks) case CleanShuffle(shuffleId) => doCleanupShuffle(shuffleId, blocking = blockOnCleanupTasks) case CleanBroadcast(broadcastId) => doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks) } } } catch { case e: Exception => logError("Error in cleaning thread", e) } } }
doCleanupBroadcast调用以下语句:
broadcastManager.unbroadcast(broadcastId, true, blocking)
然后是:
def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) { broadcastFactory.unbroadcast(id, removeFromDriver, blocking) }
每个工厂类调用其对应实体类的伴生对象的unbroadcast方法。
def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized { SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking) if (removeFromDriver) { val file = getFile(id) files.remove(file) deleteBroadcastFile(file) } }
1是删除blockManager中的缓存,2是删除本地持久化的文件
def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized { SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking) }
Broadcast可以使用在executor端多次使用某个数据的场景(比如说字典),Http和Torrent两种方式对应传统的CS访问方式和P2P访问方式,当广播变量较大或者使用较频繁时,采用后者可以减少driver端的压力。
BlockManager在此处充当P2P中的tracker角色,没有展开描述,后续会开专题讲这个部分。
声明:本文为原创,禁止用于任何商业目的,转载请注明出处:http://blog.csdn.net/asongoficeandfire/article/details/37584643
Spark大师之路:广播变量(Broadcast)源码分析,布布扣,bubuko.com
原文:http://blog.csdn.net/asongoficeandfire/article/details/37584643