首页 > 其他 > 详细

Tensorflow(辅助工具)--tensorflow slim(TF-Slim) 使用笔记

时间:2018-02-24 15:57:37      阅读:296      评论:0      收藏:0      [点我收藏+]

  如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”

一.简介

  slim被放在tensorflow.contrib这个库下面,导入的方法如下:

  import tensorflow.contrib.slim as slim

  众所周知 tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除。每个目录下都有指定的所有者。它旨在包含额外功能和贡献,最终会合并到核心TensorFlow中,但其接口可能仍然会发生变化,或者需要进行一些测试,看是否可以获得更广泛的接受。所以slim依然不属于原生tensorflow。

  slim是一个使构建,训练,评估神经网络变得简单的库。它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更紧凑,更具备可读性。另外slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。

 

  slim的子模块及功能介绍:

  arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.

  除了基本的namescope,variabelscope外,又加了argscope,它是用来控制每一层的默认超参数的。(后面会详细说)

  data: contains TF-slim‘s dataset definition, data providers, parallel_reader, and decoding utilities.

  貌似slim里面还有一套自己的数据定义,这个跳过,我们用的不多。

  evaluation: contains routines for evaluating models.

  评估模型的一些方法,用的也不多

  layers: contains high level layers for building models using tensorflow.

  这个比较重要,slim的核心和精髓,一些复杂层的定义

  learning: contains routines for training models.

  一些训练规则

  losses: contains commonly used loss functions.

  一些loss

  metrics: contains popular evaluation metrics.

  评估模型的度量标准

  nets: contains popular network definitions such as VGG and AlexNet models.

  包含一些经典网络,VGG等,用的也比较多

  queues: provides a context manager for easily and safely starting and closing QueueRunners.

  文本队列管理,比较有用。

  regularizers: contains weight regularizers.

  包含一些正则规则

  variables: provides convenience wrappers for variable creation and manipulation.

  slim管理变量的机制

二.slim定义模型

slim中定义一个变量的示例:

  # Model Variables

weights = slim.model_variable(‘weights‘,
                              shape=[10, 10, 3 , 3],
                              initializer=tf.truncated_normal_initializer(stddev=0.1),
                              regularizer=slim.l2_regularizer(0.05),
                              device=‘/CPU:0‘)
model_variables = slim.get_model_variables()
 
# Regular variables
my_var = slim.variable(‘my_var‘,
                       shape=[20, 1],
                       initializer=tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()
 
  如上,变量分为两类:模型变量和局部变量。局部变量是不作为模型参数保存的,而模型变量会再save的时候保存下来。这个玩过tensorflow的人都会明白,诸如global_step之类的就是局部变量。slim中可以写明变量存放的设备,正则和初始化规则。还有获取变量的函数也需要注意一下,get_variables是返回所有的变量。

  slim中实现一个层:

  首先让我们看看tensorflow怎么实现一个层,例如卷积层:

input = ...

with tf.name_scope(‘conv1_1‘) as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
                                           stddev=1e-1), name=‘weights‘
conv = tf.nn.conv2d(input, kernel, [1, 1, 1, 1], padding=‘SAME‘)
biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                       trainable=True, name=‘biases‘)
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
然后slim的实现:
input = ...
net = slim.conv2d(input, 128, [3, 3], scope=‘conv1_1‘)
但这个不是重要的,因为tenorflow目前也有大部分层的简单实现,这里比较吸引人的是slim中的repeat和stack操作:
net = ...
net = slim.conv2d(net, 256, [3, 3], scope=‘conv3_1‘)
net = slim.conv2d(net, 256, [3, 3], scope=‘conv3_2‘)
net = slim.conv2d(net, 256, [3, 3], scope=‘conv3_3‘)
net = slim.max_pool2d(net, [2, 2], scope=‘pool2‘)
 
在slim中的repeat操作可以减少代码量:
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope=‘conv3‘)
net = slim.max_pool2d(net, [2, 2], scope=‘pool2‘)
 
而stack是处理卷积核或者输出不一样的情况:

 

假设定义三层FC:

# Verbose way:

x = slim.fully_connected(x, 32, scope=‘fc/fc_1‘)
x = slim.fully_connected(x, 64, scope=‘fc/fc_2‘)
x = slim.fully_connected(x, 128, scope=‘fc/fc_3‘)
使用stack操作:
slim.stack(x, slim.fully_connected, [32, 64, 128], scope=‘fc‘)
同理卷积层也一样:
# 普通方法:
x = slim.conv2d(x, 32, [3, 3], scope=‘core/core_1‘)
x = slim.conv2d(x, 32, [1, 1], scope=‘core/core_2‘)
x = slim.conv2d(x, 64, [3, 3], scope=‘core/core_3‘)
x = slim.conv2d(x, 64, [1, 1], scope=‘core/core_4‘)
 
# 简便方法:
slim.stack(x, slim.conv2d, [(32, [3, 3]), (32, [1, 1]), (64, [3, 3]), (64, [1, 1])], scope=‘core‘)

slim中的argscope:

如果你的网络有大量相同的参数,如下:

net = slim.conv2d(inputs, 64, [11, 11], 4, padding=‘SAME‘,

                  weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                  weights_regularizer=slim.l2_regularizer(0.0005), scope=‘conv1‘)
net = slim.conv2d(net, 128, [11, 11], padding=‘VALID‘,
                  weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                  weights_regularizer=slim.l2_regularizer(0.0005), scope=‘conv2‘)
net = slim.conv2d(net, 256, [11, 11], padding=‘SAME‘,
                  weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                  weights_regularizer=slim.l2_regularizer(0.0005), scope=‘conv3‘)
 
然后我们用arg_scope处理一下:
with slim.arg_scope([slim.conv2d], padding=‘SAME‘,
                      weights_initializer=tf.truncated_normal_initializer(stddev=0.01)
                      weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.conv2d(inputs, 64, [11, 11], scope=‘conv1‘)
net = slim.conv2d(net, 128, [11, 11], padding=‘VALID‘, scope=‘conv2‘)
net = slim.conv2d(net, 256, [11, 11], scope=‘conv3‘)
这里额外说明一点,arg_scope的作用范围内,是定义了指定层的默认参数,若想特别指定某些层的参数,可以重新赋值(相当于重写),如上倒数第二行代码。
那如果除了卷积层还有其他层呢?那就要如下定义:
with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      activation_fn=tf.nn.relu,
                      weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
                      weights_regularizer=slim.l2_regularizer(0.0005)):
  with slim.arg_scope([slim.conv2d], stride=1, padding=‘SAME‘):
    net = slim.conv2d(inputs, 64, [11, 11], 4, padding=‘VALID‘, scope=‘conv1‘)
    net = slim.conv2d(net, 256, [5, 5],
                          weights_initializer=tf.truncated_normal_initializer(stddev=0.03),
                          scope=‘conv2‘)
    net = slim.fully_connected(net, 1000, activation_fn=None, scope=‘fc‘)

 

VGG:

def vgg16(inputs):
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      activation_fn=tf.nn.relu,
                      weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
                      weights_regularizer=slim.l2_regularizer(0.0005)):
    net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope=‘conv1‘)
    net = slim.max_pool2d(net, [2, 2], scope=‘pool1‘)
    net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope=‘conv2‘)
    net = slim.max_pool2d(net, [2, 2], scope=‘pool2‘)
    net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope=‘conv3‘)
    net = slim.max_pool2d(net, [2, 2], scope=‘pool3‘)
    net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope=‘conv4‘)
    net = slim.max_pool2d(net, [2, 2], scope=‘pool4‘)
    net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope=‘conv5‘)
    net = slim.max_pool2d(net, [2, 2], scope=‘pool5‘)
    net = slim.fully_connected(net, 4096, scope=‘fc6‘)
    net = slim.dropout(net, 0.5, scope=‘dropout6‘)
    net = slim.fully_connected(net, 4096, scope=‘fc7‘)
    net = slim.dropout(net, 0.5, scope=‘dropout7‘)
    net = slim.fully_connected(net, 1000, activation_fn=None, scope=‘fc8‘)
  return net

三.训练模型

import tensorflow as tf
vgg = tf.contrib.slim.nets.vgg
 
# Load the images and labels.
images, labels = ...
 
# Create the model.
predictions, _ = vgg.vgg_16(images)
 
# Define the loss functions and get the total loss.
loss = slim.losses.softmax_cross_entropy(predictions, labels)

 

 

  

  

Tensorflow(辅助工具)--tensorflow slim(TF-Slim) 使用笔记

原文:https://www.cnblogs.com/Libo-Master/p/8466104.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!