首页 > 其他 > 详细

Painter's Problem poj1681 高斯消元法

时间:2014-07-16 22:57:22      阅读:484      评论:0      收藏:0      [点我收藏+]
Painter‘s Problem
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4420   Accepted: 2143

Description

There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob‘s brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow. 
bubuko.com,布布扣

Input

The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a ‘w‘ to express a white brick while a ‘y‘ to express a yellow brick.

Output

For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can‘t paint all the bricks yellow, print ‘inf‘.

Sample Input

2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww

Sample Output

0
15

bubuko.com,布布扣
  1 #include <iostream>
  2 #include <stdio.h>
  3 #include <algorithm>
  4 #include <math.h>
  5 #include <string.h>
  6 #include <set>
  7 using namespace std;
  8 const int MAXN=300;
  9 int a[MAXN][MAXN];
 10 int x[MAXN];
 11 bool free_x[MAXN];
 12 inline int gcd(int a,int b)
 13 {
 14     int t;
 15     while(b!=0)
 16     {
 17         t=b;
 18         b=a%b;
 19         a=t;
 20     }
 21     return a;
 22 }
 23 inline int lcm(int a,int b)
 24 {
 25     return a/gcd(a,b)*b;
 26 }
 27 int Gauss(int equ,int var)
 28 {
 29     int i,j,k;
 30     int max_r;
 31     int col;
 32     col=0;
 33     for(k = 0; k < equ && col < var; k++,col++)
 34     {
 35         max_r=k;
 36         for(i=k; i<equ; i++)
 37         {
 38             if(a[i][col])
 39             {
 40                 max_r=i;
 41                 break;
 42             }
 43         }
 44         if(max_r!=k)
 45         {
 46             for(j=k; j<var+1; j++) swap(a[k][j],a[max_r][j]);
 47         }
 48         if(a[k][col]==0)
 49         {
 50             k--;
 51             continue;
 52         }
 53         for(i=0; i<equ; i++)
 54         {
 55             if(i!=k&&a[i][col]!=0)
 56             {
 57                 for(j=0; j<var+1; j++)
 58                 {
 59                     a[i][j]^= a[k][j];
 60                 }
 61             }
 62         }
 63     }
 64     for (i = k; i < equ; i++)
 65     {
 66         if (a[i][col] != 0) return 0;
 67     }
 68     return 1;
 69 }
 70 int main()
 71 {
 72     int n,m,t,i,j;
 73     cin>>t;
 74     char x;
 75     while(t--)
 76     {
 77         memset(a,0,sizeof(a));
 78         cin>>n;
 79         m=n*n;
 80         for(i=0; i<m; i++)
 81         {
 82             if(i%n==0)getchar();
 83             x=getchar();
 84             if(x!=y)a[i][m]=1;
 85         }
 86         for(i=0; i<m; i++)
 87         {
 88             a[i][i]=1;
 89             if(i-n>=0)
 90                 a[i][i-n]=1;
 91             if(i+n<m)
 92                 a[i][i+n]=1;
 93             if(i%n)
 94                 a[i][i-1]=1;
 95             if((i+1)%n)
 96                 a[i][i+1]=1;
 97         }
 98         if(!Gauss(m,m))cout<<"inf"<<endl;
 99         else
100         {
101             int ans=0;
102             for(i=0; i<m; i++)ans+=a[i][m]&1;
103             cout<<ans<<endl;
104         }
105     }
106 }
View Code

 

Painter's Problem poj1681 高斯消元法,布布扣,bubuko.com

Painter's Problem poj1681 高斯消元法

原文:http://www.cnblogs.com/ERKE/p/3835418.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!