首页 > 其他 > 详细

寒武纪camp Day4

时间:2018-03-01 11:04:17      阅读:145      评论:0      收藏:0      [点我收藏+]

补题进度:7/10

A(博弈论)

B

待填坑

C(贪心)

题意:

  一个序列是good的当且仅当相邻两个数字不相同。给出一个长度为n的数列,每个数字是ai。定义一种操作就是把a中某个元素拿到首位去,问最少需要多少次操作才能让数列a变成good的。如果不可行则输出-1。

  n<=1000,1<=ai<=n

分析:

  我们先来判-1的情况,当且仅当出现次数最多的那个数字的出现次数超过了$\frac{n}{2}$

  然后我们再来考虑一般的情况,我们把那些需要移动的数字全部拿出来记录一下,即b[i]表示至少要把b[i]个数字i提到前面去

  假设目前一共要移动m个数字,那么如果出现次数最多的数字的出现次数不超过$\frac{m}{2}$,那么是很美好的,因为这样我们一定可以用m此操作让它们跑到前面去并且不冲突

  但是如果出现最多的次数超过了$\frac{m}{2}$,那么我们就需要用额外的本不需要动的数字来填充其中了,讨论一下即可

  注意还要讨论一下第一位数字的值

D(后缀树)

题意:

  给出一个字符串S,一个整数l,一个整数k

  |S|<=2e5,l<=2e5,0<=k<=1e12

  我们需要求出一共有多少个长度不超过l的字符串T满足条件,答案可能很大,对1e9+7取模

  要满足的条件是以下程序段跑出的tot的值>=k

  技术分享图片

分析:

  考虑一个简单的问题,给定了一个字符串T,我们要如何快速统计出tot的值

  tot的计算过程实际上是把S的每个后缀当作一个字符串,然后让T和每个字符串去求一个LCP,然后把所有LCP相加

  很自然的想到把S的每个后缀全部加到一个Trie树中

  那么我们定义一个点的value是它在Trie树的子树中单词节点的个数,那么我们只需要让T在Trie树上走,把经过点的value都加起来就是答案了,进一步的我们可以对于每个点,求出这个点到root这条链上的所有value的和,那么答案就是分叉点处的Σvalue

  这明显可以用后缀树优化,所以复杂度是O(n)的

  好现在我们再来考虑如何统计数目,统计数目也是很简单的,我们只需要枚举分叉点的位置,然后后面的那些位任意取(当然第一个自由元并不是26种),累加即可

  我们为了优化复杂度,把这个计算过程搬到后缀树上即可,中间的计算需要在纸上算算,本质上是算等比数列求和

  建后缀树的话,只需要建出逆序的SAM,然后按照slink建树就行了

  时间复杂度O(n)

 

E(dp)

题意:

  给出n,m,p

  给出n个m维向量,向量的每一位都是0/1

  问有多少个集合S,其中异或运算在S中是封闭的,且T∈S

  答案对p取模

  1<=n<=100,1<=m<=min(2000,2^n),1<=p<=1e9

分析:

  S实际上就是包含T的线性子空间,所以就是求秩为m-rank(T)的线性子空间的个数

  我们考虑生成线性子空间的线性基的过程,从高位到低位放线性基

  每次我们有两种决策,那就是在当前列的主元位置放一个1(上面行的对应列都必须是0),或者当前位置放置0,之前有元素的行的对应位置可以随便填0/1

  于是我们就有了dp式子,dp[i][j]=dp[i-1][j-1]+dp[i-1][j]*2^j

  dp[i][j]表示填了i列填了j个主元的方案数

F(记忆化搜索+论文剪枝)

待填坑

G(贪心)

题意:

  给出一个1~n的排列,你可以把它分割成最多k段并且可以把这k个段进行排序,输出你能得到的最小字典序。

  n<=1e5

分析:

  贪心着来,先把1砍出来,然后把2砍出来……

  这样可能会面临剩下最后一刀,但是不能把下一个数字砍出来了(因为可能需要两刀),去讨论最后一刀的情况就行了

H(标记回收线段树)

题意:

  给出一个长度为n的数组a[],有q个操作,操作有两种

    1 l r v :把a[l..r]全部改成数字v

    2        :撤销目前存在的最早的1操作

  对于每次操作之后,你需要计算数组的数字和,并把它累加起来最后输出

  n,q,v<=1e5

分析:

  有了2操作,很容易想到是可持久化线段树,但是仔细一想,区间覆盖操作是不支持减法的,所以可持久化线段树好像无法做

  我们可以考虑这样来做,第i次1操作就把对应区间的值改成i,然后删除一个操作i就是把数组里所有数字i删除,变成初始状态

  因为是按照操作顺序删除操作的,所以这样是正确的

  我们只需要考虑用线段树来维护这个过程就行了

  我们假设刚开始每个位置染的颜色是inf(表示没有被染,是原来的值)

  我们现在线段树要处理问题的核心是“将数组中所有颜色i全部删除,变成inf,维护区间和”

  我们可以维护一下区间颜色min,如果一个区间颜色min>i,那么就不需要进去改颜色了(因为改颜色的过程是递增的)

  这样每次删除的话时间复杂度是O(颜色段数),这样可行吗?

  我们可以来分析一下,刚开始加入一个颜色区间,该颜色区间有log段,然后以后在染色的过程中,最多把之前的一个颜色分成两部分,所以一次修改操作只会让总段数多出log段,整体时间复杂度还是在O(nlogn)量级的

  有一点需要注意,在删除一个区间的标记之后,我们还需要将它子树里的标记全部清空(或者在做修改操作时候清空子树标记也是可行的),所以我们的线段树还需要标记回收,这也是不影响复杂度的

I

待填坑

J

待填坑

K(不平等博弈)

题意:

  在一个n个点的树上,Alice和Bob要进行博弈,首先Alice在任意一个地方下一个白棋,然后Bob在一个白棋的周围下个黑棋,然后Alice在一个白棋的周围下一个白棋……谁不能操作就算输

  n<=100

分析:

  这是个不平等博弈,所以考虑用dp解决

  dp[i]表示在以i为根的子树上下棋,Alice先手在根下,最终Alice会比Bob多走多少步

  那么在i的k个分叉中,Bob会先选择一个dp[u]最大的一个下黑棋,不让Alice下白棋,然后Alice会选择dp[u]第二大的点下白棋,然后Bob会选择一个dp[u]第三大的点下黑棋……

  那么把dp[u]排序后,我们去累加一下求和就能得到dp[i]的值了

  注意一点,最后dp[i]=max(dp[i],0),即如果走这个子树Alice比Bob走的少,那么Alice不会选择走这个子树

  最后看一下dp[1]的值和0的大小关系就知道是Alice赢还是Bob赢了

  时间复杂度是O(nlogn)的

寒武纪camp Day4

原文:https://www.cnblogs.com/wmrv587/p/8486301.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!