首页 > 其他 > 详细

Derive Modified Gram Schmidt QR Decomposition Algorithm from Gram Schmidt Orthogonalisation (part 2)

时间:2018-03-06 16:43:36      阅读:292      评论:0      收藏:0      [点我收藏+]

All rights reserved. Please don‘t share this article without notifying me. Email address: westonhunter@zju.edu.cn

From eq. 10 in part 1 we can find the Classical Gram Schmidt Algorithm, which is numerically unstable or sensitive to perturbation:

Q=zeros((m,n))
R=zeros((n,n))
for k= 1 to n
    tmpk=cAk
    for i= 1 to k-1
        R[i][k]=cAk^T*cQi
        tmpk=tmpk-R[i][k]*cQi
    R[k][k]=||tmpk||
    cQk=tmpk/R[k][k]

Q calculated by Classical Gram Schmidt algorithm is not very orthogonal due to rounding errors. An example is provided by X. Jiao[1]

技术分享图片

 

  技术分享图片

The error introduced in q1 also cause errors in q2 and q3. We will discuss how to avoid this in the next part.

[1] http://www.ams.sunysb.edu/~jiao/teaching/ams526_fall11/lectures/lecture06.pdf

Derive Modified Gram Schmidt QR Decomposition Algorithm from Gram Schmidt Orthogonalisation (part 2)

原文:https://www.cnblogs.com/cxxszz/p/8512517.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!