Given an undirected graph, return true if and only if it is bipartite.
Recall that a graph is bipartite if we can split it‘s set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists. Each node is an integer between 0 and graph.length - 1. There are no self edges or parallel edges: graph[i] does not contain i, and it doesn‘t contain any element twice.
Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2: Input: [[1,2,3], [0,2], [0,1,3], [0,2]] Output: false Explanation: The graph looks like this: 0----1 | \ | | \ | 3----2 We cannot find a way to divide the set of nodes into two independent subsets.
Note:
graphwill have length in range[1, 100].graph[i]will contain integers in range[0, graph.length - 1].graph[i]will not containior duplicate values.- The graph is undirected: if any element
jis ingraph[i], theniwill be ingraph[j].
这道题博主在最开始做的时候,看了半天,愣是没弄懂输出数据的意思,博主开始以为给的是边,后来发现跟图对应不上,就懵逼了,后来是通过研究论坛上大神们的解法,才总算搞懂了题目的意思,原来输入数组中的graph[i],表示顶点i所有相邻的顶点,比如对于例子1来说,顶点0和顶点1,3相连,顶点1和顶点0,2相连,顶点2和结点1,3相连,顶点3和顶点0,2相连。这道题让我们验证给定的图是否是二分图,所谓二分图,就是可以将图中的所有顶点分成两个不相交的集合,使得同一个集合的顶点不相连。为了验证是否有这样的两个不相交的集合存在,我们采用一种很机智的染色法,大体上的思路是要将相连的两个顶点染成不同的颜色,一旦在染的过程中发现有两连的两个顶点已经被染成相同的颜色,说明不是二分图。这里我们使用两种颜色,分别用1和-1来表示,初始时每个顶点用0表示未染色,然后遍历
解法一:
class Solution { public: bool isBipartite(vector<vector<int>>& graph) { vector<int> colors(graph.size()); for (int i = 0; i < graph.size(); ++i) { if (colors[i] == 0 && !valid(graph, 1, i, colors)) { return false; } } return true; } bool valid(vector<vector<int>>& graph, int color, int cur, vector<int>& colors) { if (colors[cur] != 0) return colors[cur] == color; colors[cur] = color; for (int i : graph[cur]) { if (!valid(graph, -1 * color, i, colors)) { return false; } } return true; } };
解法二:
class Solution { public: bool isBipartite(vector<vector<int>>& graph) { vector<int> colors(graph.size()); for (int i = 0; i < graph.size(); ++i) { if (colors[i] == 0) colors[i] = 1; for (auto a : graph[i]) { if (colors[a] == colors[i]) return false; colrs[a] = -1 * colors[a]; } } return true; } };
参考资料: