在MapReduce程序写Mapper和Reducer的驱动程序时,有很多代码都是重复性代码,因此可以将其提取出来写成一个工具类,后面再写MapReduce程序时都会使用这个工具类。
程序代码如下:
package com.uplooking.bigdata.common.utils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class MapReduceJobUtil {
public static Job buildJob(Configuration conf,
Class<?> jobClazz,
String inputpath,
Class<? extends InputFormat> inputFormat,
Class<? extends Mapper> mapperClass,
Class<?> mapKeyClass,
Class<?> mapValueClass,
Path outputpath,
Class<? extends OutputFormat> outputFormat,
Class<? extends Reducer> reducerClass,
Class<?> outkeyClass,
Class<?> outvalueClass) throws IOException {
String jobName = jobClazz.getSimpleName();
Job job = Job.getInstance(conf, jobName);
//设置job运行的jar
job.setJarByClass(jobClazz);
//设置整个程序的输入
FileInputFormat.setInputPaths(job, inputpath);
job.setInputFormatClass(inputFormat);//就是设置如何将输入文件解析成一行一行内容的解析类
//设置mapper
job.setMapperClass(mapperClass);
job.setMapOutputKeyClass(mapKeyClass);
job.setMapOutputValueClass(mapValueClass);
//设置整个程序的输出
outputpath.getFileSystem(conf).delete(outputpath, true);//如果当前输出目录存在,删除之,以避免.FileAlreadyExistsException
FileOutputFormat.setOutputPath(job, outputpath);
job.setOutputFormatClass(outputFormat);
//设置reducer,如果有才设置,没有的话就不用设置
if (null != reducerClass) {
job.setReducerClass(reducerClass);
job.setOutputKeyClass(outkeyClass);
job.setOutputValueClass(outvalueClass);
}
return job;
}
}
原文:http://blog.51cto.com/xpleaf/2084030