问题描述:体积分别为10cm3, 50cm3, 80cm3的盒子中装有价值分别为60k, 200k, 240k的珠宝,其中盒子的单位体积为10cm3,也就是说体积为50cm3的盒子中装有5个10cm3的小盒子,80cm3的盒子中装有8个10cm3的小盒子。还有一个最多能装100cm3的箱子,请问如何装载装有珠宝的盒子可使得箱子中的珠宝价值最大?
利用贪心,则很简单:
#include <iostream>
#include <vector>
using namespace std;
class greedyAlgorithm {
public:
int fractionalKnapsack(vector<int> v, vector<int> w, int size)
{
int value = 0;
int amount = 0;
for (int i = 0; i < v.size(); i++)
{
if (amount > size)
break;
if (size - amount <= w[i])
value += v[i] * (size - amount) / w[i];
else
value += v[i];
amount += w[i];
}
return value;
}
};
int main()
{
vector<int> v{60, 200, 240};
vector<int> w{10, 50, 80};
greedyAlgorithm solve;
cout << solve.fractionalKnapsack(v, w, 100);
return 0;
}
运行结果:
380