Applies a fixed-level threshold to each array element.
Parameters: |
|
---|
The function applies fixed-level thresholding to a single-channel array. The function is typically used to get a bi-level (binary) image out of a grayscale image (compare() could be also used for this purpose) or for removing a noise, that is, filtering out pixels with too small or too large values. There are several types of thresholding supported by the function. They are determined by type :
THRESH_BINARY
THRESH_BINARY_INV
THRESH_TRUNC
THRESH_TOZERO
THRESH_TOZERO_INV
Also, the special value THRESH_OTSU may be combined with one of the above values. In this case, the function determines the optimal threshold value using the Otsu’s algorithm and uses it instead of the specified thresh . The function returns the computed threshold value. Currently, the Otsu’s method is implemented only for 8-bit images.
import cv2 fn="test3.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) retval, newimg=cv2.threshold(img,40,255,cv2.THRESH_BINARY) cv2.imshow(‘preview‘,newimg) cv2.waitKey() cv2.destroyAllWindows()
自适应二值化
adaptiveThreshold函数可以二值化,也可以提取边缘:
Python: cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) → dst
下面是提取边缘 import cv2 fn="test3.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) newimg=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,5,2) cv2.imshow(‘preview‘,newimg) cv2.waitKey() cv2.destroyAllWindows() 二值化如下: import cv2 fn="test3.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) newimg=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,51,2) cv2.imshow(‘preview‘,newimg) cv2.waitKey() cv2.destroyAllWindows() |
数学之路-python计算实战(8)-机器视觉-图像二值化,布布扣,bubuko.com
原文:http://blog.csdn.net/myhaspl/article/details/37699509