首页 > 其他 > 详细

数学图形(2.3)绕在圆环上的曲线

时间:2014-07-14 09:17:17      阅读:337      评论:0      收藏:0      [点我收藏+]

前面讲了N叶结,当N值越大时,你会发现整个图形越像一个圆环.这一节就讲其他几种绕在圆环上的曲线.

vertices = 12000
t = from 0 to (64*PI)

p = rand_int2(2, 32)
q = rand_int2(2, 32)

r = 2 + cos(q/p*t)

x = r*sin(t)
y = sin(q/p*t)
z = r*cos(t)

r = 0.5 + 0.5*sin(t)
g = 0.5 + 0.5*y
b = 0.5 + 0.5*cos(t)

bubuko.com,布布扣

 

另一个圆环上的曲线

#http://www.mathcurve.com/courbes3d/solenoidtoric/solenoidtoric.shtml

vertices = 10000

t = from 0 to (20*PI)

n = rand2(0.5, 10)
a = rand2(5, 10)
b = rand2(1, 5)

x = (a + b*cos(n*t))*cos(t)
z = (a + b*cos(n*t))*sin(t)
y = b*sin(n*t)

bubuko.com,布布扣

knot(huit)

#http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml
vertices = 1000

t = from 0 to (80*PI)

x = sin(t)
y = sin(t)*cos(t)/2
z = sin(2*t)*sin(t/2) / 4

r = 10;
x = x*r
y = y*r
z = z*r

bubuko.com,布布扣

knot(Paul Bourke)

#http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml
vertices = 1000

t = from 0 to (80*PI)

x = 3*cos(t) + 5*cos(3*t)
y = 3*sin(t) + 5*sin(3*t)
z = sin(5*t/2)*sin(3*t) + sin(4*t) - sin(6*t)

r = 4;
x = x*r
y = y*r
z = z*r

bubuko.com,布布扣

knot(Rohit Chaudhary)

#http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml
vertices = 12000

t = from 0 to (2*PI)

a = sin(t)
b = cos(t)
c = sin(2*t)
d = cos(2*t)
e = sin(3*t)
f = cos(3*t)

x = 32*b - 51*a - 104*d - 34*c + 104*f - 91*e
y = 94*b + 41*a + 113*d - 68*f - 124*e
z = 16*b + 73*a - 211*d - 39*c - 99*f - 21*e

bubuko.com,布布扣

knot(37)

vertices = 10000
t = from 0 to (6*PI)

p = 3
q = 7

r = 2 + cos(q/p*t)

x = r*sin(t)
y = sin(q/p*t)
z = r*cos(t)

r = 0.5 + 0.5*sin(t)
g = 0.5 + 0.5*y
b = 0.5 + 0.5*cos(t)

bubuko.com,布布扣

 

数学图形(2.3)绕在圆环上的曲线,布布扣,bubuko.com

数学图形(2.3)绕在圆环上的曲线

原文:http://www.cnblogs.com/WhyEngine/p/3840009.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!