首页 > 其他 > 详细

Storm Trident示例Aggregator

时间:2018-03-24 21:59:27      阅读:214      评论:0      收藏:0      [点我收藏+]

Aggregator首先在输入流上运行全局重新分区操作(global)将同一批次的所有分区合并到一个分区中,然后在每个批次上运行的聚合功能,针对Batch操作。与ReduceAggregator很相似。

省略部分代码,省略部分可参考:https://blog.csdn.net/nickta/article/details/79666918

static class State {  
        int count = 0;  
    }  
FixedBatchSpout spout = new FixedBatchSpout(new Fields("user", "score"), 3,    
                new Values("nickt1", 4),   
                new Values("nickt2", 7),    
                new Values("nickt3", 8),   
                new Values("nickt4", 9),    
                new Values("nickt5", 7),   
                new Values("nickt6", 11),   
                new Values("nickt7", 5)   
                );   
        spout.setCycle(false);   
        TridentTopology topology = new TridentTopology();   
        topology.newStream("spout1", spout)   
                .shuffle()   
                .each(new Fields("user", "score"),new Debug("shuffle print:"))  
                .parallelismHint(5)  
                .aggregate(new Fields("score"), new BaseAggregator<State>() {  
                    //在处理每一个batch的数据之前,调用1次  
                    //空batch也会调用  
                    @Override  
                    public State init(Object batchId, TridentCollector collector) {  
                        return new State();  
                    }  
                    //batch中的每个tuple各调用1次  
                    @Override  
                    public void aggregate(State state, TridentTuple tuple, TridentCollector collector) {  
                        state.count = tuple.getInteger(0) + state.count;  
                    }  
                    //batch中的所有tuples处理完成后调用   
                    @Override  
                    public void complete(State state, TridentCollector collector) {  
                        collector.emit(new Values(state.count));  
                    }  
                      
                }, new Fields("sum"))  
                .each(new Fields("sum"),new Debug("sum print:"))  
                .parallelismHint(5);  

输出:

[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt1, 4]
[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt3, 8]
[partition3-Thread-118-b-0-executor[36 36]]> DEBUG(shuffle print:): [nickt2, 7]
[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt5, 7]
[partition3-Thread-118-b-0-executor[36 36]]> DEBUG(shuffle print:): [nickt4, 9]
[partition3-Thread-118-b-0-executor[36 36]]> DEBUG(shuffle print:): [nickt6, 11]
[partition1-Thread-82-b-1-executor[39 39]]> DEBUG(sum print:): [19]
[partition2-Thread-66-b-1-executor[40 40]]> DEBUG(sum print:): [27]
[partition4-Thread-136-b-0-executor[37 37]]> DEBUG(shuffle print:): [nickt7, 5]
[partition3-Thread-54-b-1-executor[41 41]]> DEBUG(sum print:): [5]

Storm Trident示例Aggregator

原文:https://www.cnblogs.com/nickt/p/8641424.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!