首页 > 其他 > 详细

记一道贝叶斯公式的裸题

时间:2018-03-28 22:31:52      阅读:208      评论:0      收藏:0      [点我收藏+]

上课好不容易听懂了,赶紧整理一下,不然以我的记性估计明天就要忘干净了QWQ

 

题目

一个用户所有邮件分为两类:$A_1$代表垃圾邮件, $A_2$代表非垃圾邮件

根据经验,$P(A_1) = 0.7$, $P(A_2) = 0.3$。

令$B$表示邮件包含“免费”这一关键词,由历史邮件得知, $P(B|A_1) = 0.9$,

$P(B|A_2) = 0.01$(注意:它们之和并不一定等于$1$)。

问若收到一封新邮件,包含了“免费”这一关键字,那么它是垃圾邮件的概率是多少

 

Solution

题目要求的实际是$P(A_1|B)$

根据条件概率公式

$$P(A_1|B)=\frac{P(A_1|B)}{P(B)}$$

转换为贝叶斯公式

$$P(A_1|B)=\frac{P(B|A_1)P(A_1)}{P(B)}$$

将分式底下$P(B)$这一项用全概率公式展开

$$P(A_1|B)=\frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1)+P(B|A_2)P(A_2)}$$

然后就可以算了

$$P(A_1|B)=\frac{0.9*0.7}{0.9*0.7+0.01*0.3}$$

$$\approx 0.995260663507109004739336492891 \% $$

 

好恐怖QWQ。。。

记一道贝叶斯公式的裸题

原文:https://www.cnblogs.com/zwfymqz/p/8666506.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!