首页 > 其他 > 详细

二叉树及其线索化分析

时间:2014-07-13 16:07:10      阅读:348      评论:0      收藏:0      [点我收藏+]

 

1. Where did it could work?

/**
*    Q: Where did it could work?
*
*    A: Bin-tree is generally used in deal with work about search or sort. For a  balance tree, it‘s depth is log2(n). That‘s means if we want to find a  node in the tree we need

*        only do choice at most log2(n). This is very exciting compare with the normal search algorithm,which search a node by check nodes one by one. of course, not all of

*        binary trees have this feature, that is depend on the rules what we used to create this tree. By choice varied rules, we could get some amazing result. For example:

*        ordered tree is helpful if we want to get a excellent search performance, or insert a member into a sequence quickly; we use maximum tree to build heap sort; we

*        use the feature of tree to build a Huffman coding and the like.
*
*        Here is an examples about heap sort.
*        http://blog.csdn.net/u012301943/article/details/34136891#t12
*/

 

2. Have any properties ?

/**
*    Q: Have any properties ?
*
*    A: Though the types of tree is varied, they still have some common features. For a complete binary tree, we could ensure all of it‘s nodes have two child except for leaf
*        node and the parent of the last leaf node. so the features is as following:
*
*            1). if the number of node in the n-th layer is labeled as L(n), then
*                    L(n+1) = L(n) + L(n-1) + ...L(2) + L(1) + 1, except for the last layer.
*
*                Demonstrate this conclusion:
*                    Image this, we have a tree ,which‘s depth is n; In first layer, it have 2^0 nodes;
*                In second layer, it have 2^1 nodes.
*
*                                     O                                    -- 2^0
*                               O          O                              -- 2^1
*                            O    O    O    O                           -- 2^2
*                                      .                                     .
*                                      .                                     .
*                                      .                                     .
*                                      .
*                     O   O   ................    O    O                -- 2^(n-2)
*                 O     O     ................       O     O            -- 2^(n-1)
*
*
*                So, How many nodes in this tree?
*                The answer should as following ,
*
*                    S(n) = 2^0 + 2^1 + ....2^(n-1) = 2^n -1
*                based on this conclusion, we know
*
*                    S(n+1) = 2^(n+1) - 1 = 2^n + 2^n - 1 = 2^n + S(n)
*                    L(n+1) = S(n+1) - S(n) = 2^n -1 + 1 = S(n) + 1
*
*
*            2). Number all of nodes from top to bottom, from left to right. if the number of root node is 1 and we labeled the i-th node as N(i), then we can ensure that
*                        Left child : N(2*i)
*                        right child: N(2*i + 1)
*
*                Demonstrate this conclusion:
*
*                now , we number all of nodes in a tree. Based on our conclusion above , we could to know the number of every node is 2^n + X(n) - 1; X means for
*                the position of this node in corresponding layer.
*
*                                     O                                    -- 2^0 + X0 -1
*                               O          O                              -- 2^1 + X1 -1
*                            O    O    O    O                           -- 2^2 + X2 -1
*                                      .                                     .
*                                      .                                     .
*                                      .                                     .
*                                      .
*                     O   O   ................    O    O                -- 2^(n-2) + X[n-2] - 1
*                 O     O     ................       O     O            -- 2^(n-1) + X[n-1] - 1
*
*                if there is a node W in the i-th layer, we can know it‘s number is
*                    2^(i-1) + X[i-1] -1.
*
*                then the number of right child of W should be
*                    2^i + X[i] - 1.
*   
*                it is easy to prove that:
*                    X(i+1) = 2*X(i)
*
*                combine the conclusion above, we could know :
*                    Node            : 2^i + X(i) - 1
*                    Right child     : 2^(i+1) + X[i+1] -1 = 2^(i+1) + 2*X[i] - 1
*                                        =2*(  2^i + X[i] - 1 ) +1
*
*   that‘s means ,
*                    Node          :    i
*                    Right child  :    2*i + 1
*                    Left child    :    2*i
*/

 

3.How come we want to threaded a tree into a link?

/**
*    Q: How come we want to threaded a tree into a link?
*
*
*    As we all know , generally, our node is like this
*
*            struct node{
*                struct node *lchild;
*                struct node *rchild;
*                DATA data;
*            };
*
*        there are three member. we use @lchild and @rchild to save a pointer to the  node‘s child. But for leaf node, we didn‘t use this region. That is a waste resource.
*
*        Can I reuse those resources ?
*
*        Of course, we can. Think about this: How can we throughout a tree? 
*
*        Recursion is a common way. Actually, what we really need is a stack, which  have a feature of first-in and last-out. So we have two choices if we want to throughout
*    a tree. First method is use function recursion. In this case, the system will automaticlly  create a stack for us. Second method, create a stack and manage it by ourself.
*    No matter what we choice, the cost is still expensive. Now, we have some idle  resources.Some people introduce a method to use those resources to solve this
*    problem. when we want to throughout a tree, this way can protect us from the  expensive recursion operation. In other words, we can use some idle resources to

*    improve our binary tree.
*/

 

4. How can we create a threaded tree ?

/**
*    Q: How can we create a threaded tree ?
*
*    A: First at all, some bad news need to clarify. As we all know, we have three  kinds of ergodic order: preorder, inorder and postorder. If we want to create a
*        threaded tree They must be have different requests for idle resources. On the other  hand, we have two types of threaded tree: towards to back, toward to
*        head. They have different requests to idle resources too . In a word, we have the following conclusion:
*
*            1). For inorder traversal, the idle resources is match with the  requests. We can create two types of threaded tree: toward to back and toward to head.
*            2). For preorder traversal, the situation is become awful. We can only create the threaded tree that toward to back.
*            3). For postorder traversal, we can only create the threaded tree that  toward to head.
*
*        (Need to say, there are some trick to cover this problem, but difficult.)
*        we should have demonstrated the conclusion above, explain it as clear and simple as possible, but, unfortunately,that is out of my league. All of the text above is

*        just want to clarify a fact: we can‘t create a threaded tree always, sometime it is difficult since we haven‘t a match  idle resource. Now, It time to return our issue.

*       Actually, the process of initialize a threaded tree is simple. What we need to do is just through a  tree by a order, and initialize some idle region in some nodes.
*/

 

5. source code

/*

*        Here is a simple source code about the threaded binary tree. There are many problem in it. But easy on it, it just a example:

*/

#include <stdio.h>


typedef int    INDEX;
enum ORDER {
        OR_PRE,
        OR_POST,
        OR_IN,
        OR_INVALIED,
};

/**
*    The node of a tree. Because it's data region is unknown, we build a 
*    template class to ensure it can match with different data element.
*/
template <class ELEM>
class NODE {
        public:
                NODE<ELEM>    *left;
                NODE<ELEM>    *right;
                ELEM                    ele;
                /*
            *    In a threaded tree, we need two tags to ensure the status of pointer region.
            */
                bool        rtag;
                bool        ltag;
};
/**
*    the type of data region. For uniform the use of target data, Here define
*    a macro.
*/
#define ELEMENT	char

/**
*    This is a common interface for user do some operation. It is defined by
*    user and called by every node when do a throughout traversal.
*/
typedef bool (*CallBack)( NODE<ELEMENT> *data);

/**
*    The core class, it is provide some operation that is needed by deal with the
*    binary tree . some of non-core operation is not defined.
*/
class BTREE:public NODE<ELEMENT> {
        public:
                BTREE( );
                ~BTREE( );
                /*
            *    Create a tree by a string.
            */
                bool CreateBTree( char *);
                bool DestroyBTree( );
                bool EmptyBTree( );
                /*
            *    Three types of ergodic : inorder, preorder and postorder. In inorder traversal,
            *    we will initialize those idle region of nodes to create a threaded tree.
            */
                bool InOrder( CallBack func);
                bool PreOrder( CallBack func);
                bool PostOrder( CallBack func);
                /*
            *    After do a inorder traversal, a threaded tree will be created automatically..
            *    Of course, It is a inorder threaded tree. Based on those data, we can
            *    do a inorder traversal simply, no longer need recursion operation.
            */
                bool InOrder_th( CallBack func);

        private:
                /*
            *    used to create a tree by a string.
            */
                bool createSubTree( char *tree, INDEX &pos, NODE<ELEMENT> **p_child);
                /*
            *    Normally, we traverse a tree by recursion operation. The following is 
            *    the recursion function corresponding to different order .
            */
                bool _InOrder( CallBack func, NODE<ELEMENT> *nod);
                bool _PreOrder( CallBack func, NODE<ELEMENT> *nod);
                bool _PostOrder( CallBack func, NODE<ELEMENT> *nod);
                /*
            *    used to create a link between two nodes.
            */
                bool _CreateLink( NODE<ELEMENT> *nod, NODE<ELEMENT> *last);
                /*
            *    point to root node.
            */
                NODE<ELEMENT>    *root;
                /*
            *    In general, It is a invalied value. After do a traversal, we will create
            *    a threaded tree , this member is used to record what kind of current 
            *    threaded tree. This is important, since different threaded tree have 
            *    a different rules for use.
            */
                ORDER        order;
                /*
            *    we record every node which we was arrived at last time. So when we
            *    arrive a new node, if necessary, we can create a link between those
            *    two nodes .
            */
                 NODE<ELEMENT>    *last;
                /*
            *    A threaded tree have a head node and it is not always the root node.
            *    So it is needful to have a pointer to this head node.
            */
                NODE<ELEMENT>    *head;
                /*
            *    This is the end node of a threaded tree. Sometime we maybe want to
            *    traversal a tree by reversed direction.
            */
                NODE<ELEMENT>    *end;
};


BTREE::BTREE( )
{
        this->root = NULL;
        this->order = OR_INVALIED;
        this->last = NULL;
        this->head = NULL;
        this->end = NULL;
}

BTREE::~BTREE( )
{
        if( this->root!=NULL)
        {
                this->DestroyBTree( );
                this->root = NULL;
                this->last = NULL;
                this->head = NULL;
                this->end = NULL;
        }
}

/*
*    create a tree.
*/
bool BTREE::CreateBTree( char *tree)
{

        INDEX    pos = 0;
        return this->createSubTree( tree, pos, &this->root);
}

bool BTREE::DestroyBTree( )
{
        return false;
}

bool BTREE::EmptyBTree( )
{
        return false;
}

/**
*    Create a tree by a string.
*/
bool BTREE::createSubTree( char *tree, INDEX &pos, NODE<ELEMENT> **p_child)
{
        /*
       *    if we encounter a '\0' or ' ', that's means this branch is NULL.
       */
        if( (tree[pos]!='\0')
                &&(tree[pos]!=' ') )
        {
                /*
            *    create a node for this normal char. Then we will try to create it's child.
            *    Of cource, if the following char is a abnormal char, that's means there 
            *    are no child for this node.
            */
                *p_child = new NODE<ELEMENT>;
                (*p_child)->ele = tree[pos];
                (*p_child)->left = NULL;
                (*p_child)->right = NULL;
                (*p_child)->rtag = false;
                (*p_child)->ltag = false;
                /*
            *    recur to create sub-tree.
            */
                pos++;
                this->createSubTree( tree, pos, &(*p_child)->left);
                pos ++;
                this->createSubTree( tree, pos, &(*p_child)->right);

                return true;
        }

        *p_child = NULL;
        return false;
}


bool BTREE::InOrder( CallBack func)
{
        this->last = NULL;
        if( this->_InOrder( func, this->root))
        {
                this->order = OR_IN;
                return true;
        }
        else
        {
                this->order = OR_INVALIED;
                return false;
        }
}


bool BTREE::_InOrder( CallBack func, NODE<ELEMENT> *nod)
{

        if( nod!=NULL)
        {
                if( !nod->ltag)
                        this->_InOrder( func, nod->left);

                if( func!=NULL)
                        func( nod);
                //create link
                this->_CreateLink( nod, this->last);
                //save the head of nodes.
                if( this->last==NULL)
                {
                        this->head = nod;
                }
                this->last = nod;

                if( !nod->rtag)
                        this->_InOrder( func, nod->right);

                return true;
        }

        return false;
}


bool BTREE::_CreateLink( NODE<ELEMENT> *nod, NODE<ELEMENT> *last )
{
        nod->ltag = false;
        nod->rtag = false;
        if( nod->left==NULL)
        {
                nod ->left = last;
                nod->ltag = true;
        }
        if( ( last!=NULL)
                &&(last->right==NULL))
        {
                last->right = nod;
                last->rtag = true;
        }

        return true;
}

bool BTREE::PostOrder( CallBack func)
{

        if( this->_PostOrder( func, this->root) )
        {
                this->order = OR_POST;
                return true;
        }
        else
        {
                this->order = OR_INVALIED;
                return false;
        }
}

bool BTREE::_PostOrder(CallBack func,NODE < ELEMENT > * nod)
{
        if( nod!=NULL)
        {
                if( !nod->ltag)
                        this->_PostOrder( func, nod->left);
                if( !nod->rtag )
                        this->_PostOrder( func, nod->right);

                if( func!=NULL)
                        func( nod);

                return true;
        }

        return false;
}

bool BTREE::PreOrder( CallBack func)
{
        if( this->_PreOrder( func, this->root) )
        {
                this->order = OR_PRE;
                return true;
        }
        else
        {
                this->order = OR_INVALIED;
                return false;
        }
}

bool BTREE::_PreOrder( CallBack func,NODE < ELEMENT > * nod)
{
        if( nod!=NULL)
        {
                if( func!=NULL)
                        func( nod);
                if( !nod->ltag )
                        this->_PreOrder( func, nod->left);
		
                if( !nod->rtag)
                        this->_PreOrder( func, nod->right);

                return true;
        }
        return false;
}

/**
*    compare this with the normal traversal function , the recursion function 
*    are avoided.
*/
bool BTREE::InOrder_th(CallBack func)
{
        if( this->order!=OR_IN)
        {
                return false;
        }

        NODE<ELEMENT> *cur = this->head;
        while( cur!=NULL)
        {
                if( func!=NULL)
                        func( cur);

                if( cur->rtag )
                {
                        cur = cur->right;
                }
                else
                {//find smallest one in right branch.
                        cur = cur->right;
                        while( (cur!=NULL)
                                && (!cur->ltag) ) 
                        {
                                cur = cur->left;
                        }
                }
        }

        return true;
}


bool show( NODE<ELEMENT> *data)
{
        printf(" %c ", data->ele);
        fflush( stdin);
        //getchar();
        return true;
}

/**
*    based on our rules, we will create a tree like this.
*
*                    [1]
*                 /       *              [2]         [3]
*             /   \        /  *          [4]   [5]   [6]  [7]
*         /   *      [8]    [9]
*
*/
#define TREE	"1248  9  5  36  7  "
/***/

int main()
{
        BTREE    tree;
        tree.CreateBTree( TREE);
        tree.InOrder( show);
        printf("\n");
        tree.InOrder_th( show);
        printf("\n");
        tree.PreOrder( show);
        printf("\n");
        tree.PostOrder( show);
        printf("\n");

        return 0;
}

二叉树及其线索化分析,布布扣,bubuko.com

二叉树及其线索化分析

原文:http://blog.csdn.net/u012301943/article/details/37725863

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!