首页 > 其他 > 详细

C#实现的bp神经网络并应用于综合评价

时间:2014-07-13 18:29:14      阅读:489      评论:0      收藏:0      [点我收藏+]

由于课程设计选的题目是基于神经网络的综合评价,利用暑假时间用C#实现的bp神经网络。其中用到的_Matrix类是C#实现的矩阵类http://blog.csdn.net/lanqiuchaoren/article/details/37738665。此bp神经网络包含1个隐藏层,其中输入层,隐藏层,输出层个数都可以根据需要更改。

具体bp神经网络代码如下

BP类:

using Matrix_Mul;
using Excel = Microsoft.Office.Interop.Excel;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Text;
using System.Threading.Tasks;
using Microsoft.Office.Interop.Excel;



namespace BPNETSerial
{
    public class BP
    {

        /// <summary>
        /// 判断是否训练过网络
        /// </summary>
        Boolean IsTrained;
        /// <summary>
        /// 用于矩阵的相关计算
        /// </summary>
        _Matrix_Calc matrix_Calc;

        /// <summary>
        /// 输入层节点数
        /// </summary>
        int innum;

        /// <summary>
        /// 测试数据组数
        /// </summary>
        int train_num;
        /// <summary>
        /// 训练数据组数
        /// </summary>

        int test_num;
        public int Test_num
        {
            get
            {
                return test_num;
            }
            set
            {
                test_num = value;
            }
        }
        /// <summary>
        /// 测试数据维度;
        /// </summary>
        int sampdim;

        /// <summary>
        /// 隐藏层节点数
        /// </summary>
        int midnum;

        /// <summary>
        /// 输出层节点数
        /// </summary>
        int outnum;

        /// <summary>
        /// 迭代次数
        /// </summary>
        int iteration;

        /// <summary>
        /// 输入层与隐藏层间的权值
        /// </summary>
        _Matrix w1;

        /// <summary>
        /// 输入层与隐藏层间的阀值
        /// </summary>
        _Matrix b1;

        /// <summary>
        /// 输出层与隐藏层间的权值
        /// </summary>
        _Matrix w2;

        /// <summary>
        /// 输出层与隐藏层间的阀值
        /// </summary>
        _Matrix b2;

        /// <summary>
        /// 保存w1的值
        /// </summary>
        _Matrix w1_1;

        /// <summary>
        /// 保存w2的值
        /// </summary>
        _Matrix w2_1;

        /// <summary>
        /// 用于综合评价的矩阵(基于bp神经网络测试结果)
        /// </summary>
        _Matrix comprehesiveEvaluationMatrix;
        /// <summary>
        /// 综合评价结果输出矩阵(基于bp神经网络测试结果)
        /// </summary>
        _Matrix comprehensiveEvaluationResultMatrix;
        /// <summary>
        /// 保存b1的值
        /// </summary>
        _Matrix b1_1;

        /// <summary>
        /// 保存b2的值
        /// </summary>
        _Matrix b2_1;

        /// <summary>
        /// 学习率
        /// </summary>
        double xite;

        /// <summary>
        /// 误差
        /// </summary>
        double error;

         public double[] comprehensiveEvaluation;

        double accu_average;
        /// <summary>
        /// 误差率
        /// </summary>
        double[] accuracy;
        /// <summary>
        /// 训练输入数据
        /// </summary>
        _Matrix input_train;

        public _Matrix Input_train
        {
            get
            {
                return input_train;
            }
            set
            {
                this.input_train = value;
            }
        }
        /// <summary>
        /// 训练输出数据
        /// </summary>
        _Matrix output_train;

        public _Matrix Output_train
        {
            get
            {
                return output_train;
            }
            set
            {
                this.output_train = value;
            }
        }
        /// <summary>
        /// 归一化后的训练输入数据
        /// </summary>
        _Matrix input_train_Norm;

        /// <summary>
        /// 归一化后的训练输出数据
        /// </summary>
        _Matrix output_train_Norm;

        /// <summary>
        /// 测试输入数据
        /// </summary>
        _Matrix input_test;

        public _Matrix Input_test
        {
            get
            {
                return input_test;
            }
            set
            {
                this.input_test = value;
            }
        }

        /// <summary>
        /// 预期输出数据(归一化前)
        /// </summary>
        public _Matrix fore_test;

        /// <summary>
        /// 预期输出数据(归一化后)
        /// </summary>
        public _Matrix fore;

        /// <summary>
        /// 测试输出数据
        /// </summary>
        _Matrix output_test;

        public _Matrix Output_test
        {
            get
            {
                return output_test;
            }
            set
            {
                this.output_test = value;
            }
        }

        /// <summary>
        /// 误差矩阵
        /// </summary>
        _Matrix error_test;

        /// <summary>
        /// 归一化后的测试输入数据
        /// </summary>
        _Matrix input_test_Norm;

        /// <summary>
        /// 归一化后的测试输出数据
        /// </summary>
        _Matrix output_test_Norm;

        /// <summary>
        /// 构造函数
        /// </summary>
        /// <param name="innum"></param>
        /// <param name="midnum"></param>
        /// <param name="outnum"></param>
        /// <param name="num"></param>
        /// <param name="sampDim"></param>
        /// <param name="input_train"></param>
        /// <param name="output_train"></param>
        /// <param name="xite"></param>
        public BP(int innum, int midnum, int outnum, int train_num, int sampDim, int iteration, double xite)
        {
            this.innum = innum;
            this.midnum = midnum;
            this.outnum = outnum;
            this.iteration = iteration;
            matrix_Calc = new _Matrix_Calc();
            this.train_num = train_num;
            this.sampdim = sampDim;
            this.xite = xite;
            this.input_train = new _Matrix(train_num, sampDim);
            input_train.init_matrix();
            this.output_train = new _Matrix(train_num, outnum);
            output_train.init_matrix();

            //初始化w1,w2,b1,b2;
            w1 = InitWB(midnum, innum);
            w2 = InitWB(midnum, outnum);
            b1 = InitWB(midnum, 1);
            b2 = InitWB(outnum, 1);
            w1_1 = new _Matrix(w1);
            b1_1 = new _Matrix(b1);
            w2_1 = new _Matrix(w2);
            b2_1 = new _Matrix(b2);
        }

        /// <summary>
        /// 应用与BP训练时的计算,矩阵的每一个值乘上学习率
        /// </summary>
        /// <param name="data"></param>
        /// <param name="xite"></param>
        /// <returns></returns>
        public _Matrix AddStudyRate(_Matrix data, double xite)
        {
            for (int i = 0; i < data.m; i++)
            {
                for (int j = 0; j < data.n; j++)
                {
                    data.write(i, j, data.read(i, j) * xite);
                }
            }
            return data;

        }

        /// <summary>
        /// 归一化
        /// </summary>
        /// <param name="data"></param>
        /// <returns></returns>
        public _Matrix Normalize(_Matrix data)  //@_@ to do test
        {
            _Matrix dat = new _Matrix(data);
            for (int i = 0; i < dat.m; i++)
            {
                double min = 100000.0; double max = -100000.0;
                for (int j = 0; j < dat.n; j++)
                {
                    double s = dat.read(i, j);
                    if (s > max)
                    {
                        max = s;
                    }
                    else if (s < min)
                    {
                        min = s;
                    }


                }
                for (int j = 0; j < dat.n; j++)
                {
                    double s = dat.read(i, j);
                    s = (s - min) / (max - min);
                    dat.write(i, j, s);
                }
            }

            return dat;
        }

        /// <summary>
        /// 初始化w1,w2,b1,b2
        /// </summary>
        /// <param name="m"></param>
        /// <param name="n"></param>
        /// <returns></returns>
        public _Matrix InitWB(int m, int n)
        {
            _Matrix mat = new _Matrix(m, n);
            mat.init_matrix();
            Random rand = new Random();
            for (int i = 0; i < m; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    double s;
                    s = (rand.NextDouble() - 0.5) * 2;
                    mat.write(i, j, s);
                }
            }
            return mat;

        }

        /// <summary>
        /// 获取矩阵的某一行
        /// </summary>
        /// <param name="data"></param>
        /// <param name="kk"></param>
        /// <returns></returns>
        public _Matrix GetRow(_Matrix data, int kk)
        {
            _Matrix p = new _Matrix(1, data.n);
            p.init_matrix();
            for (int i = 0; i < data.n; i++)
            {
                p.write(0, i, data.read(kk, i));
            }
            return p;
        }

        public _Matrix GetColumn(_Matrix data, int kk)
        {
            _Matrix p = new _Matrix(data.m, 1);
            p.init_matrix();
            for (int i = 0; i < data.m; i++)
            {
                p.write(i, 0, data.read(i, kk));
            }
            return p;
        }

        public double sumsqr(_Matrix data)
        {
            double s = 0.0;
            for (int i = 0; i < data.m; i++)
            {
                for (int j = 0; j < data.n; j++)
                {
                    s += data.read(i, j) * data.read(i, j);
                }
            }
            return s;
        }


        /// <summary>
        /// 训练网络
        /// </summary>
        /// <param name="input_train">输入矩阵(可以是未归一化的)</param>
        /// <param name="output_train">期望的输出矩阵(可以是未归一化的)</param>
        public void trainBP(_Matrix input_train, _Matrix output_train)
        {
            this.input_train = input_train;
            this.output_train = output_train;
            this.input_train_Norm = Normalize(input_train);
            this.output_train_Norm = Normalize(output_train);

            for (int ii = 0; ii < iteration; ii++)
            {
                for (int i = 0; i < train_num; i++)
                {
                    var x = GetColumn(input_train_Norm, i);

                    _Matrix I = new _Matrix(1, midnum);
                    I.init_matrix();
                    _Matrix lout = new _Matrix(1, midnum);
                    lout.init_matrix();
                    for (int j = 0; j < midnum; j++)
                    {
                        _Matrix t = new _Matrix(1, 1);
                        t.init_matrix();

                        _Matrix aaa = GetColumn(input_train_Norm, i);
                        _Matrix tt = matrix_Calc.transposs(aaa);
                        _Matrix ttt = matrix_Calc.transposs(GetRow(w1, j));
                        t = matrix_Calc.multiplys(tt, ttt);
                        I.write(0, j, t.read(0, 0) + b1.read(j, 0));
                        double s = 1 / (1 + Math.Exp(-I.read(0, j)));
                        lout.write(0, j, s);

                    }

                    _Matrix yn;
                    _Matrix y = matrix_Calc.transposs(w2);
                    _Matrix yy = matrix_Calc.transposs(lout);
                    _Matrix yyy = matrix_Calc.multiplys(y, yy);
                    yn = matrix_Calc.adds(yyy, b2);
                    _Matrix e;
                    e = GetColumn(output_train_Norm, i);
                    e = matrix_Calc.subtracts(e, yn);
                    _Matrix dw2;
                    dw2 = matrix_Calc.multiplys(e, lout);
                    _Matrix db2 = matrix_Calc.transposs(e);
                    _Matrix dw1 = new _Matrix(innum, midnum);
                    dw1.init_matrix();
                    _Matrix db1 = new _Matrix(1, midnum);
                    db1.init_matrix();
                    double[] FI = new double[midnum];

                    for (int j = 0; j < midnum; j++)
                    {
                        double S = 1 / (1 + Math.Exp(-I.read(0, j)));
                        FI[j] = S;
                    }
                    for (int k = 0; k < innum; k++)
                    {
                        for (int j = 0; j < midnum; j++)
                        {
                            double s = 0.0;
                            for (int tt = 0; tt < outnum; tt++)
                            {
                                s += e.arr[tt] * w2.read(j, tt);
                            }
                            dw1.write(k, j, FI[j] * x.read(k, 0) * s);
                            db1.write(j, 1, FI[j] * s);
                        }
                    }
                    _Matrix sw1 = matrix_Calc.transposs(dw1);
                    _Matrix sb1 = matrix_Calc.transposs(db1);
                    _Matrix sw2 = matrix_Calc.transposs(dw2);
                    _Matrix sb2 = matrix_Calc.transposs(db2);
                    w1 = matrix_Calc.adds(w1_1, AddStudyRate(sw1, xite));
                    _Matrix aaaa = AddStudyRate(sb1, xite);
                    b1 = matrix_Calc.adds(b1_1, aaaa);
                    w2 = matrix_Calc.adds(w2_1, AddStudyRate(sw2, xite));
                    b2 = matrix_Calc.adds(b2_1, AddStudyRate(sb2, xite));
                    w1_1 = new _Matrix(w1);
                    b1_1 = new _Matrix(b1);
                    w2_1 = new _Matrix(w2);
                    b2_1 = new _Matrix(b2);

                }


            }

        }

        /// <summary>
        /// 将测试数据代入进行测试
        /// </summary>
        /// <param name="input_test">测试组的输入数据</param>
        /// <param name="output_test">测试组的预期输出数据</param>
        /// <param name="test_num">测试组的组数</param>
        public void testBP(_Matrix input_test, _Matrix output_test, int test_num)
        {
            this.input_test = input_test;
            this.output_test = output_test;
            this.input_test_Norm = Normalize(input_test);
            this.output_test_Norm = Normalize(output_test);
            fore_test = new _Matrix(output_test.m, output_test.n);
            fore_test.init_matrix();
            error_test = new _Matrix(output_test.m, output_test.n);
            error_test.init_matrix();
            this.test_num = test_num;
            for (int i = 0; i < test_num; i++)
            {
                double[] I = new double[midnum];
                _Matrix lout = new _Matrix(1, midnum);
                lout.init_matrix();
                for (int j = 0; j < midnum; j++)
                {

                    _Matrix s = GetColumn(input_test_Norm, i);
                    s = matrix_Calc.transposs(s);
                    _Matrix ss = GetRow(w1, j);
                    ss = matrix_Calc.transposs(ss);
                    _Matrix sss = matrix_Calc.multiplys(s, ss);
                    I[j] = sss.arr[0] + b1.read(j, 0);

                    lout.write(0, j, 1 / (1 + Math.Exp(-I[j])));


                }
                _Matrix t = matrix_Calc.transposs(w2);
                _Matrix tt = matrix_Calc.transposs(lout);
                _Matrix ttt = matrix_Calc.adds(matrix_Calc.multiplys(t, tt), b2);
                for (int j = 0; j < fore_test.m; j++)
                {
                    fore_test.write(j, i, ttt.read(j, 0));
                }

            }
            error_test = matrix_Calc.subtracts(fore_test, output_test_Norm);
            error = sumsqr(error_test);
            Console.WriteLine(error);

        }

        
        /// <summary>
        /// 获得综合评价矩阵
        /// </summary>
        /// <param name="num">综合评价矩阵的维度</param>
        public void GetComprehensiveEvaluationMatrix(int num)
        {
            if (output_test_Norm.arr==null)
            {
                return;
            }
            output_test_Norm = matrix_Calc.transposs(output_test_Norm);
            fore_test = matrix_Calc.transposs(fore_test);
            comprehesiveEvaluationMatrix = new _Matrix(output_test_Norm.m,2*num);
            comprehesiveEvaluationMatrix.init_matrix();
            for (int i = 0; i < comprehesiveEvaluationMatrix.m; i++)
            {
                comprehesiveEvaluationMatrix.write(i,0,output_test_Norm.read(i,0));
                double s = 0.0;
                s = output_test_Norm.read(i,1)+output_test_Norm.read(i,2)+output_test_Norm.read(i,3)+output_test_Norm.read(i,4)+output_test_Norm.read(i,5);
                s = s / 5;
                comprehesiveEvaluationMatrix.write(i, 1, s);
                comprehesiveEvaluationMatrix.write(i, 2, output_test_Norm.read(i, 6));
                comprehesiveEvaluationMatrix.write(i, 3, output_test_Norm.read(i, 7));

                comprehesiveEvaluationMatrix.write(i, 4, fore_test.read(i, 0));
                
                s = fore_test.read(i, 1) + fore_test.read(i, 2) + fore_test.read(i, 3) + fore_test.read(i, 4) + fore_test.read(i, 5);
                s = s / 5;
                comprehesiveEvaluationMatrix.write(i, 5, s);
                comprehesiveEvaluationMatrix.write(i, 6, fore_test.read(i, 6));
                comprehesiveEvaluationMatrix.write(i, 7, fore_test.read(i, 7));
            }
        }
        /// <summary>
        /// 进行综合评价,获得综合评价后的结果矩阵
        /// </summary>
        /// <param name="ComEval">各维度权值</param>
        /// <param name="data">评价矩阵</param>
        public void ComEvaluation(double [] ComEval)
        {
            comprehensiveEvaluationResultMatrix = new _Matrix(comprehesiveEvaluationMatrix.m,3);
            comprehensiveEvaluationResultMatrix.init_matrix();
            _Matrix data = new _Matrix(comprehesiveEvaluationMatrix);
            for (int i = 0; i < data.m; i++)
            {
                double s = 0.0;
                for (int j = 0; j < data.n/2; j++)
                {
                    s += ComEval[j] * data.read(i,j);
                }
                comprehensiveEvaluationResultMatrix.write(i,0,i+1);
                comprehensiveEvaluationResultMatrix.write(i,1,s);
                s = 0.0;
                for (int j = data.n/2; j < data.n; j++)
                {
                    s += ComEval[j-data.n/2] * data.read(i, j);
                }
                
                comprehensiveEvaluationResultMatrix.write(i, 2, s);
            }
        }

       

        /// <summary>
        /// ComEvaResult矩阵写入EXCEL
        /// </summary>
        public void ComEvaResult_Excel()
        {
            if (comprehensiveEvaluationResultMatrix.arr==null)
            {
                return;
            }
            var excelApp = new Microsoft.Office.Interop.Excel.Application();


            Workbooks workbooks = excelApp.Workbooks;
            Workbook workBook = workbooks.Add(Type.Missing);
            Worksheet workSheet = (Worksheet)workBook.Worksheets[1];//取得sheet1

            for (int i = 1; i <=comprehensiveEvaluationResultMatrix.m; i++)
            {
                for (int j = 1; j <=comprehensiveEvaluationResultMatrix.n; j++)
                {
                    workSheet.Cells[i, j] = comprehensiveEvaluationResultMatrix.read(i-1,j-1);
                }
            }

            workBook.SaveAs(@"d:\comEvaResult.xlsx", Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Excel.XlSaveAsAccessMode.xlNoChange, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing);
            workbooks.Close();

        }
        /// <summary>
        /// 把求得的W,B,w,b
        /// </summary>
        public void WB_Excel()
        {
            var excelApp = new Microsoft.Office.Interop.Excel.Application();


            Workbooks workbooks = excelApp.Workbooks;
            Workbook workBook = workbooks.Add(Type.Missing);
            Worksheet workSheet = (Worksheet)workBook.Worksheets[1];//取得sheet1
            workSheet.Name = "w1";
            for (int i = 1; i <= this.w1.m; i++)
                {
                    for (int j = 1; j <= this.w1.n; j++)
                    {
                        workSheet.Cells[i, j] = this.w1.read(i - 1, j - 1);
                    }
                }
            workBook.Worksheets.Add(Type.Missing,Type.Missing,Type.Missing,Type.Missing);
            workSheet = (Worksheet)workBook.Worksheets[1];
            workSheet.Name = "b1";
            for (int i = 1; i <= this.b1.m; i++)
            {
                for (int j = 1; j <=b1.n; j++)
                {
                    workSheet.Cells[i, j] = this.b1.read(i-1,j-1);
                }
            }

            workBook.Worksheets.Add(Type.Missing, Type.Missing, Type.Missing, Type.Missing);
            workSheet = (Worksheet)workBook.Worksheets[1];
            workSheet.Name = "w2";

            for (int i = 1; i <= this.w2.m; i++)
            {
                for (int j = 1; j <= w2.n; j++)
                {
                    workSheet.Cells[i, j] = this.w2.read(i - 1, j - 1);
                }
            }

            workBook.Worksheets.Add(Type.Missing, Type.Missing, Type.Missing, Type.Missing);
            workSheet = (Worksheet)workBook.Worksheets[1];
            workSheet.Name = "b2";

            for (int i = 1; i <= this.b2.m; i++)
            {
                for (int j = 1; j <= b2.n; j++)
                {
                    workSheet.Cells[i, j] = this.b2.read(i - 1, j - 1);
                }
            }


            

            workBook.SaveAs(@"d:\saveWB.xlsx", Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Excel.XlSaveAsAccessMode.xlNoChange, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing);
            workbooks.Close();
                
           
            

            



    
        }
        /// <summary>
        /// 输出结果写入Excel
        /// </summary>
        public void output_Excel()
        {
            var excelApp = new Microsoft.Office.Interop.Excel.Application();


            Workbooks workbooks = excelApp.Workbooks;
            Workbook workBook = workbooks.Add(Type.Missing);
            Worksheet workSheet = (Worksheet)workBook.Worksheets[1];//取得sheet1

            for (int j = 1; j < 9; j++)
                workSheet.Cells[1, j] = accuracy[j - 1];
            workSheet.Cells[2, 1] = accu_average;

            workBook.SaveAs(@"d:\result.xlsx", Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Excel.XlSaveAsAccessMode.xlNoChange, Type.Missing, Type.Missing, Type.Missing, Type.Missing, Type.Missing);
            workbooks.Close();
            


        }
        /// <summary>
        /// 反归一化获得输出结果
        /// </summary>
        public void ConvNorm()
        {
            fore = matrix_Calc.transposs(this.fore_test);
            _Matrix output = matrix_Calc.transposs(this.Output_train);
            for (int i = 0; i < output.n; i++)
            {
                double max = -100000.0; double min = 100000.0;
                for (int j = 0; j < output.m; j++)
                {
                    if (max < output.read(j, i))
                    {
                        max = output.read(j, i);
                    }
                    else if (min > output.read(j, i))
                    {
                        min = output.read(j, i);
                    }

                }
                for (int j = 0; j < fore.m; j++)
                {
                    double s = (max - min) * fore.read(j, i) + min;
                    fore.write(j, i, s);
                }
            }
        }

        public void CalcAccuracy()
        {
            accuracy = new double[outnum];
            _Matrix output = matrix_Calc.transposs(output_train);
            accu_average = 0.0;
            for (int i = 0; i < outnum; i++)
            {
                double accu = 0.0;
                for (int j = 0; j < test_num; j++)
                {
                    accu += Math.Abs(fore.read(j, i) - output.read(j, i)) / output.read(j, i);
                    accu_average += Math.Abs(fore.read(j, i) - output.read(j, i)) / output.read(j, i);
                }
                accuracy[i] = accu / 180;
                accu_average = accu_average / (outnum) / (test_num);
            }

        }

    }
}

主程序:

using NPOI.HSSF.UserModel;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Matrix_Mul;
using Excel=Microsoft.Office.Interop.Excel;
using System.Reflection;

namespace BPNETSerial
{
    class Program
    {
        static void Main(string[] args)
        {
            //初始化bp神经网络
            BP bp = new BP(9,15,8,1620,9,300,0.2);
            //创建一个mat来便于对_Matrix类进行计算
            _Matrix_Calc mat = new _Matrix_Calc();

            

            using (FileStream stream = new FileStream(@"train.xls", FileMode.Open, FileAccess.Read))
            {
                HSSFWorkbook Workbook = new HSSFWorkbook(stream);
                var Sheet = Workbook.GetSheetAt(0);
                int j = 0;
                for (int i = 1; i < 1621; i++)
                {
                    var row = Sheet.GetRow(i);
                    for (int k = 0; k < row.Cells.Count; k++)
                    {
                        bp.Input_train.arr[j++] = row.GetCell(k).NumericCellValue;
                        
                    }

                }


            }
            
            using (FileStream stream = new FileStream(@"train.xls", FileMode.Open, FileAccess.Read))
            {
                HSSFWorkbook Workbook = new HSSFWorkbook(stream);
                var Sheet = Workbook.GetSheetAt(1);
                int j = 0;
                for (int i = 1; i < 1621; i++)
                {
                    var row = Sheet.GetRow(i);
                    for (int k = 0; k < row.Cells.Count; k++)
                    {
                       bp.Output_train.arr[j++] = row.GetCell(k).NumericCellValue;
                    }

                }


            }

            using (FileStream stream = new FileStream(@"train.xls", FileMode.Open, FileAccess.Read))
            {
                bp.Test_num = 180;
                bp.Input_test = new _Matrix(180,9);
                bp.Input_test.init_matrix();
                HSSFWorkbook Workbook = new HSSFWorkbook(stream);
                var Sheet = Workbook.GetSheetAt(2);
                int j = 0;
                for (int i = 1; i < 181; i++)
                {
                    var row = Sheet.GetRow(i);
                    for (int k = 0; k < row.Cells.Count; k++)
                    {
                        bp.Input_test.arr[j++] = row.GetCell(k).NumericCellValue;

                    }

                }


            }
            using (FileStream stream = new FileStream(@"train.xls", FileMode.Open, FileAccess.Read))
            {
                bp.Output_test = new _Matrix(180, 8);
                bp.Output_test.init_matrix();
                HSSFWorkbook Workbook = new HSSFWorkbook(stream);
                var Sheet = Workbook.GetSheetAt(3);
                int j = 0;
                for (int i = 1; i < 181; i++)
                {
                    var row = Sheet.GetRow(i);
                    for (int k = 0; k < row.Cells.Count; k++)
                    {
                        bp.Output_test.arr[j++] = row.GetCell(k).NumericCellValue;

                    }

                }


            }
            bp.Input_train = mat.transposs(bp.Input_train);
            _Matrix Output_train = new _Matrix(bp.Output_train);
            bp.Output_train = mat.transposs(bp.Output_train);
            bp.Input_test = mat.transposs(bp.Input_test);
            bp.Output_test = mat.transposs(bp.Output_test);
            bp.trainBP(bp.Input_train,bp.Output_train);
            bp.testBP(bp.Input_test,bp.Output_test,180);
            //以下的代码均是为了测试网络准确度和实现综合评价所写
            //bp.ConvNorm();
            //bp.CalcAccuracy();
            //bp.GetComprehensiveEvaluationMatrix(4);

            //bp.comprehensiveEvaluation = new double[4] {0.3309,0.2201,0.2696,0.1793 };
            //bp.ComEvaluation(bp.comprehensiveEvaluation);
            //bp.ComEvaResult_Excel();
            //bp.WB_Excel();
            //bp.output_Excel();
        }
    }
}
其中数据来自来自Minifab(

Minifab是针对Intel公司的半导体生产线提炼出的用于研究的调度仿真模型,在机器数和加工步数都较少的情况下,能够反映半导体生产线的一些本质问题,满足研究的需要。)

训练输入数据是1620组9维数据,输出是1620组8维数据;测试输入数据为180组9维数据,输出是180组8维数据;训练后总误差为3.4%


项目源代码:http://download.csdn.net/detail/lanqiuchaoren/7628945

C#实现的bp神经网络并应用于综合评价,布布扣,bubuko.com

C#实现的bp神经网络并应用于综合评价

原文:http://blog.csdn.net/lanqiuchaoren/article/details/37738793

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!