首页 > 其他 > 详细

MT【122】一个重要的不平凡的无穷级数

时间:2018-04-08 14:18:03      阅读:202      评论:0      收藏:0      [点我收藏+]

求证:$1+\dfrac{1}{4}+\dfrac{1}{9}+\cdots +\dfrac{1}{n^2}+\cdots = \dfrac{\pi^2}6$.

解答:考虑$$\dfrac{\sin x}x=1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-\dfrac{x^6}{7!}+\cdots +(-1)^n\dfrac{x^{2n}}{(2n+1)!}+\cdots ,$$ 由于$y=\dfrac{\sin x}x$的零点为$x=\pm \pi,\pm 2\pi,\cdots ,\pm n\pi,\cdots ,$

因此$1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-\dfrac{x^6}{7!}+\cdots +(-1)^n\dfrac{x^{2n}}{(2n+1)!}+\cdots =\left(1-\dfrac{x^2}{\pi^2}\right)\left(1-\dfrac{x^2}{4\pi^2}\right)\cdots \left(1-\dfrac{x^2}{n^2\pi^2}\right)\cdots,$ 对比上式中$x^2$项的系数可得$$1+\dfrac{1}{4}+\dfrac{1}{9}+\cdots +\dfrac{1}{n^2}+\cdots = \dfrac{\pi^2}6.$$

评:此方法是欧拉最早使用的,欧拉以它卓越的分析能力,给出了这个级数和的最早的正确答案,当然站着大学数学分析的角度,这个方法还是显得有些粗超和冒险。

MT【122】一个重要的不平凡的无穷级数

原文:https://www.cnblogs.com/mathstudy/p/8744446.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!