定义:每个节点的左右子树的高度最多差1的二叉查找树。(空树的高度为-1)。
AVL树保证树的高度只比log(N)多一点,因此除了插入删除外,可以保证所有的树操作都以O(logN)执行。
当插入一个节点的时候,只有那些从插入点到根节点路径上的点的平衡性可能被破坏,在最深的不满足平衡性的节点进行平衡操作,可以重新使整个树满足AVL特性。
主要操作:对不满足AVL特性的子树执行单旋转和双旋转操作,使得插入后的子树保持和插入前的子树相同的高度。
节点的基本定义:
1 struct AvlNode; 2 typedef struct AvlNode *Position; 3 typedef struct AvlNode *AvlTree; 4 5 struct AvlNode{ 6 ElementType Element; 7 AvlTree Left; 8 AvlTree Right; 9 int Height; 10 };
单旋转(左-左 右-右)代码如下:
1 Position SingleRotateWithLeft(AvlTree K2){ 2 Position K1; 3 K1 = K2->Left; 4 K2->Left = K1->Right; 5 K1->Right = K2; 6 7 K2->Height = max(Height(K2->Left), Height(K2->Right)) + 1; 8 K1->Height = max(Height(K1->Left), K2->Height) + 1; 9 return K1; 10 } 11 12 Position SingleRotateWithRight(AvlTree K2){ 13 Position K1; 14 K1 = K2->Right; 15 K2->Right = K1->Left; 16 K1->Left = K2; 17 18 K2->Height = max(Height(K2->Left), Height(K2->Right)) + 1; 19 K1->Height = max(K2->Height, Height(K1->Right)) + 1; 20 return K1; 21 }
双旋转(左-右 右-左)代码如下:
1 Position DoubleRotateWithLeft(AvlTree K3){ 2 K3->Left = SingleRotateWithRight(K3->Left); 3 return SingleRotateWithLeft(K3); 4 } 5 6 Position DoubleRotateWithRight(AvlTree K3){ 7 K3->Right = SingleRotateWithLeft(K3->Right); 8 return SingleRotateWithRight(K3); 9 }
插入算法如下:
1 AvlTree Insert(ElementType X, AvlTree T){ 2 if(T == NULL){ 3 T = (AvlTree)malloc(sizeof(struct AvlNode)); 4 T->Height = 0; 5 T->Left = T->Right = NULL; 6 T->Element = X; 7 } 8 else if(X < T->Element){ 9 T->Left = Insert(X, T->Left); 10 if(Height(T->Left)-Height(T->Right) == 2){ 11 if(X < T->Left->Element){ 12 T = SingleRotateWithLeft(T); 13 } 14 else{ 15 T = DoubleRotateWithLeft(T); 16 } 17 } 18 } 19 else if(X > T->Element){ 20 T->Right = Insert(X, T->Right); 21 if(Height(T->Right)-Height(T->Left) == 2){ 22 if(X > T->Right->Element){ 23 T = SingleRotateWithRight(T); 24 } 25 else{ 26 T = DoubleRotateWithRight(T); 27 } 28 } 29 } 30 31 T->Height = max(Height(T->Left), Height(T->Right)) + 1; 32 return T; 33 }
原文:https://www.cnblogs.com/lwyeah/p/8810310.html