首页 > 其他 > 详细

leetcode-231-Power of Two

时间:2018-04-14 14:59:08      阅读:234      评论:0      收藏:0      [点我收藏+]

题目描述:

Given an integer, write a function to determine if it is a power of two.

 

要完成的函数:

bool isPowerOfTwo(int n) 

 

说明:

1、给定一个int型整数,判断它是不是2的幂。首先我们可以确定负数和0都不是2的幂。1是2的0次幂。

2、如果一个数是2的幂的话,那么它可以一直除以2,直到最后等于1。如果在除以2的过程中,不能再除以2了,也就是变成了一个奇数,那么它不是2的幂。

   根据上述方法,我们可以构造出如下简单的代码:

    bool isPowerOfTwo(int n) 
    {
        if(n==0) return false;
        else if(n==1) return true;
        while(n!=1)
        {
            if(n%2==0)
                n=n/2;
            else
                return false;
        }
        return true;
    }

上述代码实测6ms,beats 83.03% of cpp submissions。时间复杂度为O(logn)

 

3、除了上述方法,我们还有没有其他方法呢?日常逛评论区…

因为2的整数次幂其实在二进制上就是其他位为0,只有一位为1。所以大神又开始处理二进制了,在数学上找关系。

假设n为2的整数次幂,只有一位为1,其他位都为0,那么n&(n-1)必定为0。其他的不满足只有一位为1,其他位为0的条件的数,都不能使得n&(n-1)成立。

 

为什么?举几个例子:(下面为2进制表示)

1和0,成立。1是2的0次幂。

10和01,成立。2是2的1次幂。

11和10,不成立。

100和011,成立。4是2的2次幂。

101和100,不成立。

110和101,不成立。

111和110,不成立。

1000和0111,成立。8是2的3次幂。

1001和1000,不成立。

1010和1001,不成立。

1011和1010,不成立。

1100和1011,不成立。

1101和1100,不成立。

1110和1101,不成立。

1111和1110,不成立。

观察上述举的这么多的例子,我们可以发现,不成立的都是首位都为1的。首位都为1,那么逐位相与的结果必定不是为0。

而只有2的整数次幂n,以及n-1,两者逐位相与的结果才会为0。

 

所以我们可以构造出如下代码:

    bool isPowerOfTwo(int n) 
    {
        if(n<=0)
            return false;
        if((n&(n-1))==0)//(n&(n-1))最外层的括号要加上,因为如果n&(n-1)==0,先计算的是等于号
            return true;
        else
            return false;
    }

时间复杂度缩小到O(1),而且二进制处理对于计算机来说更加直接,也更加省时间。

 

4、还有另一种更加神奇的方法,笔者本人也是第一次见到,十分新颖。

先附上代码:

    bool isPowerOfTwo(int n) 
    {
        if (n>0 && (1073741824 % n == 0))
            return true;
        else
            return false;
    }

大神的这种方法,来源于对int型整数的深刻了解。

int型整数中最大的2的整数次幂是2^30=1073741824,所有的2^k(k为整数)都能被2^30整除。而那些不是2^k的数,比如因子中含有不包括2的素数呀,或者普通的奇数等,都不能被2^30整除,因为2^30只含有30个2的因子。

上述方法十分新颖独特,复杂度也是O(1)。实测时间跟3中的一样。

不过要说最简单最便于计算机处理的方法,还是3中的位操作法。

leetcode-231-Power of Two

原文:https://www.cnblogs.com/king-3/p/8831588.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!