首页 > 其他 > 详细

[ACM] 最短路算法整理(bellman_ford , SPFA , floyed , dijkstra 思想,步骤及模板)

时间:2014-07-16 17:32:55      阅读:397      评论:0      收藏:0      [点我收藏+]

以杭电2544题目为例

最短路




Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 

Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
 

Sample Output
3 2
 

Source

//bellman_ford算法,求单源到其它节点的最短路,可以处理含有负权的边,并且能判断图中是否存在负权回路(这一条在一些题中也有应用)
//无向图转化为有向图,边数加倍,构造边结构体,没用到邻接矩阵
#include <iostream>
using namespace std;
const int maxNodeNum=110;//最多节点个数
const int maxEdgeNum=10010;//最多边条数
int nodeNum,edgeNum;//节点,有向边个数
int dis[maxNodeNum];//从单源点到各个点的距离
const int inf=0x3f3f3f3f;//边的权重无穷大数
bool loop;//判断是否存在负权回路

struct Edge
{
    int s,e,w;
}edge[maxEdgeNum*2];//构造边,这里因为是无向图,要看成有向处理。

void bellman_ford(int start)
{
    //第一步:赋初值
    for(int i=1;i<=nodeNum;i++)
        dis[i]=inf;
    dis[start]=0;
    //第二步,对边进行松弛更新操作
    for(int i=1;i<=nodeNum-1;i++)//最短路径为简单路径不可能含有环,图中最多有nodeNum-1条边
    {
        bool ok=0;
        for(int j=1;j<=edgeNum;j++)
        {
            if(dis[edge[j].s]+edge[j].w<dis[edge[j].e])//松弛
            {
                dis[edge[j].e]=dis[edge[j].s]+edge[j].w;
                ok=1;
            }
        }
        if(ok==0)
            break;
    }
    //第三步,判断图中是否存在负权环
    loop=0;
    for(int i=1;i<=edgeNum;i++)
        if(dis[edge[i].s]+edge[i].w<dis[edge[i].e])
        loop=1;
}

int main()//125MS
{
    while(cin>>nodeNum>>edgeNum&&(nodeNum||edgeNum))
    {
        int from,to,w;
        int cnt=1;
        for(int i=1;i<=edgeNum;i++)//无向图,一条无向边看为两条有向边
        {
            cin>>from>>to>>w;
            edge[cnt].s=edge[cnt+1].e=from;
            edge[cnt].e=edge[cnt+1].s=to;
            edge[cnt++].w=w;
            edge[cnt++].w=w;//切记,不能写成 edge[cnt++]=edge[cnt++].w;
        }
        edgeNum*=2;//无向图
        bellman_ford(1);
        cout<<dis[nodeNum]<<endl;
    }
    return 0;
}



//SPFA算法,是对bellman_ford算法的优化,采用队列,在队列中取点对其相邻的点进行松弛操作
//如果松弛成功且相邻的点不在队列中,就把相邻的点加入队列,被取的点出队,并把它的状态(是否在队列中)
//改为否,vis[i]=0,同一个节点可以多次进入队列进行松弛操作
//这样的题操作步骤:首先建立邻接矩阵,邻接矩阵初始化为inf,注意需要判断一下输入的边是否小于已有的边,取最小的那个,因为可能有重边,
//建立完邻接矩阵,写SPFA函数,dis[]数组初始化为inf,源点dis[start]=0
#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
const int maxNodeNum=110;//最多节点个数
const int maxEdgeNum=10010;//最多边条数
const int inf=0x3f3f3f3f;//边的权重无穷大数
int nodeNum,edgeNum;//节点,有向边个数
int dis[maxNodeNum];//从单源点到各个点的距离
bool vis[maxNodeNum];//某个节点是否已经在队列中

int mp[maxNodeNum][maxNodeNum];//建立邻接矩阵

void SPFA(int start)
{
    //第一步:建立队列,初始化vis,dis数组,并把源点加入队列中,修改其vis[]状态
    queue<int>q;
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=nodeNum;i++)
        dis[i]=inf;
    dis[start]=0;
    q.push(start);
    vis[start]=1;
    //第二步:在队列中取点,把其vis状态设为0,对该点相邻的点(连接二者的边)进行松弛操作,修改相邻点的dis[]
    //并判断相邻的点vis[]状态是否为0(不存在于队列中),如果是,将其加入到队列中
    while(!q.empty())
    {
        int from=q.front();
        q.pop();
        vis[from]=0;//别忘了这一句,哎
        for(int i=1;i<=nodeNum;i++)
        {
            if(dis[from]+mp[from][i]<dis[i])
            {
                dis[i]=dis[from]+mp[from][i];
                if(!vis[i])//要写在松弛成功的里面
                {
                    q.push(i);
                    vis[i]=1;
                }
            }
        }
    }
}

int main()//109MS
{
    while(cin>>nodeNum>>edgeNum&&(nodeNum||edgeNum))
    {
        int from,to,w;
        memset(mp,inf,sizeof(mp));//初始化
        for(int i=1;i<=edgeNum;i++)//无向图,一条无向边看为两条有向边
        {
            cin>>from>>to>>w;
            if(w<mp[from][to])
                mp[from][to]=mp[to][from]=w;
        }
        SPFA(1);
        cout<<dis[nodeNum]<<endl;
    }
    return 0;
}


//floyed算法,时间复杂度高,但代码简单,可以处理负边,但图中不能包含负权回路
//可以求任意一点到另外一点的最短路,而不只是源点唯一

#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
const int maxNodeNum=110;//最多节点个数
const int maxEdgeNum=10010;//最多边条数
const int inf=0x3f3f3f3f;
int nodeNum,edgeNum;//节点,有向边个数
int mp[maxNodeNum][maxNodeNum];//建立邻接矩阵

void floyed()
{
    for(int k=1;k<=nodeNum;k++)
        for(int i=1;i<=nodeNum;i++)
            for(int j=1;j<=nodeNum;j++)
                if(mp[i][k]+mp[k][j]<mp[i][j])
                    mp[i][j]=mp[i][k]+mp[k][j];
}

int main()//140MS
{
    while(cin>>nodeNum>>edgeNum&&(nodeNum||edgeNum))
    {
        int from,to,w;
        memset(mp,inf,sizeof(mp));//初始化
        for(int i=1;i<=edgeNum;i++)//无向图,一条无向边看为两条有向边
        {
            cin>>from>>to>>w;
            if(w<mp[from][to])
                mp[from][to]=mp[to][from]=w;
        }
        floyed();
        cout<<mp[1][nodeNum]<<endl;
    }
    return 0;
}


//dijkstra算法求最短路,单源最短路,不能处理带有负权的图
//思想为单源点加入集合,更新dis[]数组,每次取dis[]最小的那个点,加入集合,再次更新dis[]数组,取点加入集合,直到所有的点都加入集合中
#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
const int maxNodeNum=110;//最多节点个数
const int maxEdgeNum=10010;//最多边条数
const int inf=0x3f3f3f3f;
int nodeNum,edgeNum;//节点,有向边个数
int mp[maxNodeNum][maxNodeNum];//建立邻接矩阵
int dis[maxNodeNum];//dis[i]为源点到i的最短路径
bool vis[maxNodeNum];//判断某个节点是否已加入集合

void dijkstra(int start)
{
    //**第一步:初始化,dis[]为最大,vis均为0(都未加入集合)
    memset(dis,inf,sizeof(dis));
    memset(vis,0,sizeof(vis));
    dis[start]=0;
    //**第二步:找dis[]值最小的点,加入集合,并更新与其相连的点的dis[]值
    
    //一开始集合里没有任何点,下面的循环中,第一个找到的点肯定是源点
    for(int i=1;i<=nodeNum;i++)
    {
        //寻找dis[]最小的点,加入集合中
        int MinNumber,Min=inf;//MinNumber为dis[]值最小的点的编号
        for(int j=1;j<=nodeNum;j++)
        {
            if(dis[j]<Min&&!vis[j])
            {
                Min=dis[j];
                MinNumber=j;
            }
        }
        //找到dis[]最小的点,加入集合,更新与其相连的点的dis值
        vis[MinNumber]=1;
        for(int j=1;j<=nodeNum;j++)
            if(dis[MinNumber]+mp[MinNumber][j]<dis[j])
            dis[j]=dis[MinNumber]+mp[MinNumber][j];
    }
}


int main()//109MS
{
    while(cin>>nodeNum>>edgeNum&&(nodeNum||edgeNum))
    {
        int from,to,w;
        memset(mp,inf,sizeof(mp));//初始化
        for(int i=1;i<=edgeNum;i++)//无向图,一条无向边看为两条有向边
        {
            cin>>from>>to>>w;
            if(w<mp[from][to])
                mp[from][to]=mp[to][from]=w;
        }
        dijkstra(1);
        cout<<dis[nodeNum]<<endl;
    }
    return 0;
}



[ACM] 最短路算法整理(bellman_ford , SPFA , floyed , dijkstra 思想,步骤及模板),布布扣,bubuko.com

[ACM] 最短路算法整理(bellman_ford , SPFA , floyed , dijkstra 思想,步骤及模板)

原文:http://blog.csdn.net/sr_19930829/article/details/37818315

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!