首页 > 其他 > 详细

How to get gradients with respect to the inputs in pytorch

时间:2018-04-30 21:57:13      阅读:254      评论:0      收藏:0      [点我收藏+]

This is one way to find adversarial examples of CNN.

The boilerplate:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import numpy as np

  Define a simple network:

class lolnet(nn.Module):
    def __init__(self):
        super(lolnet,self).__init__()
        self.a=nn.Linear(in_features=1,out_features=1,bias=False)
        self.a.weight = nn.Parameter(torch.FloatTensor([[0.6]]))
        self.b=nn.Linear(in_features=1,out_features=1,bias=False)
        self.b.weight=nn.Parameter(torch.FloatTensor([[0.6]]))
        self.a.requires_grad=False
        self.b.requires_grad=False
    def forward(self, inputs):
        return self.b(
            self.a(inputs)
        )

  The inputs

inputs=np.array([[5]])
inputs=torch.from_numpy(inputs).float()
inputs=Variable(inputs)
inputs.requires_grad=True
net=lolnet()

  The optimizer

opx=optim.SGD(
    params=[
        {"params":inputs}
    ],lr=0.5
)

  The optimization process

for i in range(50):
    x=net(inputs)
    loss=(x-1)**2
    opx.zero_grad() 
    loss.backward()
    opx.step()
    print(net.a.weight.data.numpy()[0][0],inputs.data.numpy()[0][0],loss.data.numpy()[0][0])

  The results are as below:

0.6 4.712 0.6400001
0.6 4.4613247 0.4848616
0.6 4.243137 0.36732942
0.6 4.0532265 0.27828723
0.6 3.8879282 0.2108294
0.6 3.7440526 0.15972354
0.6 3.6188233 0.1210059
0.6 3.5098238 0.09167358
0.6 3.4149506 0.069451585
0.6 3.332373 0.052616227
0.6 3.2604973 0.039861854
0.6 3.1979368 0.030199187
0.6 3.143484 0.022878764
0.6 3.0960886 0.017332876
0.6 3.0548356 0.013131317
0.6 3.0189288 0.00994824
0.6 2.9876754 0.0075367615
0.6 2.9604726 0.005709796
0.6 2.9367952 0.0043257284
0.6 2.9161866 0.003277142
0.6 2.8982487 0.0024827516
0.6 2.8826356 0.0018809267
0.6 2.869046 0.001424982
0.6 2.8572176 0.0010795629
0.6 2.8469222 0.0008178701
0.6 2.837961 0.00061961624
0.6 2.830161 0.00046941772
0.6 2.8233721 0.000355627
0.6 2.8174632 0.0002694209
0.6 2.81232 0.00020411481
0.6 2.8078432 0.0001546371
0.6 2.8039467 0.00011715048
0.6 2.8005552 8.875507e-05
0.6 2.7976031 6.724081e-05
0.6 2.7950337 5.093933e-05
0.6 2.7927973 3.8591857e-05
0.6 2.7908509 2.9236677e-05
0.6 2.7891567 2.2150038e-05
0.6 2.7876818 1.6781378e-05
0.6 2.7863982 1.2713146e-05
0.6 2.785281 9.631679e-06
0.6 2.7843084 7.296927e-06
0.6 2.783462 5.527976e-06
0.6 2.7827253 4.1880226e-06
0.6 2.782084 3.1727632e-06
0.6 2.7815259 2.4034823e-06
0.6 2.78104 1.821013e-06
0.6 2.7806172 1.3793326e-06
0.6 2.780249 1.044933e-06
0.6 2.7799287 7.9170513e-07

Process finished with exit code 0

  

How to get gradients with respect to the inputs in pytorch

原文:https://www.cnblogs.com/cxxszz/p/8974640.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!