作者:lily
5本深度学习书籍资源推荐
深度学习(Deep Learning)byIan Goodfellow and Yoshua Bengio and Aaron Courville
中文版下载地址:https://github.com/exacity/deeplearningbook-chinese
R语言深度学习实践指南(Deep Learning Made Easy with R)by Dr. N.D. Lewis
下载地址:http://download.csdn.net/detail/oscer2016/9829915
深度学习基础(Fundamentals of Deep Learning)by Nikhil Buduma
下载地址:http://www.taodocs.com/p-32598980.html
神经网络和统计学习(Neural networks and statistical learning) by K.-L. Du and M.N.s. Swamy
下载地址:http://download.csdn.net/detail/oscer2016/9829919
神经网络和深度学习(Neural Networks and Deep Learning) by Michael Niels
下载地址:http://download.csdn.net/download/newhotter/9651111
10本机器学习书籍资源推荐
机器学习、神经网络和统计分类(Machine Learning, Neural Networks, and Statistical Classification)by
D. Michie, D.J. Spiegelhalter, C.C. Taylor
下载地址:http://www1.maths.leeds.ac.uk/~charles/statlog/
贝叶斯推理和机器学习(Bayesian Reasoning and Machine Learning)by David Barber
下载地址:http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.Online
机器学习的高斯过程(Gaussian Processes for Machine Learning) by Carl Edward Rasmussen and Christopher K. I. Williams,The MIT Press
下载地址:http://www.gaussianprocess.org/gpml/
信息理论、推理和学习算法(Information Theory, Inference, and Learning Algorithms) by David J.C. MacKay
下载地址:http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
统计学习元素(The Elements of Statistical Learning)by Trevor Hastie, Robert Tibshirani, Jerome Friedman
下载地址:http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
机器学习课程(A Course in Machine Learning)by Hal Daumé III
下载地址:http://ciml.info/
机器学习导论(Introduction to Machine Learning)by Amnon Shashua,Cornell University
下载地址:https://arxiv.org/abs/0904.3664v1
强化学习(Reinforcement Learning)
下载地址:https://www.intechopen.com/books/reinforcement_learning
机器学习导论(Introduction to Machine Learning)- By Nils Nilsson
下载地址:http://ai.stanford.edu/~nilsson/mlbook.html
强化学习(Reinforcement Learning)- MIT Press
下载地址:http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
原文:https://www.cnblogs.com/Eufisky/p/8974970.html