首页 > 其他 > 详细

利用tensorflow训练简单的生成对抗网络GAN

时间:2018-04-30 23:51:17      阅读:583      评论:0      收藏:0      [点我收藏+]

对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的。 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程。整个网络训练的过程中,

两个模块的分工

  • 判断器,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假)
  • 生成器,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个图像。从图中可以看到,会存在两个数据集,一个是真实数据集,这好说,另一个是假的数据集,那这个数据集就是有生成网络造出来的数据集。好了根据这个图我们再来理解一下GAN的目标是要干

利用tensorflow训练简单的生成对抗网络GAN

原文:https://www.cnblogs.com/chenyusheng0803/p/8975238.html

(1)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!