首页 > 其他 > 详细

是否有无穷多组基本勾股数

时间:2018-05-04 20:08:20      阅读:251      评论:0      收藏:0      [点我收藏+]

 

 

是。我的方法如下:

设a为任意大于1的奇数,所以a2也是奇数,b=(a2-1)/2,c=(a2+1)/2,

=> (c-b)(c+b)=1*a2

=> a2+b2=c2

因为b+1=c,所以b,c互质。

a,b也互质,否则b,c不互质。a,c同理。

因为a为(……),所以有无穷多组基本勾股数。

 

很多年前,初三数学老师在黑板上写了几组勾股数,然后其中几组a,b,c有这样的规律(b+1=c)。提了一下,问我们是不是有什么规律。

 


 

上面的不包含(8,15,17)这组,换种方法:

任意a为大于4的偶数可以包含它,但是会出现b,c都是偶数的情况。

原因是,b=a2/4-1。a是偶数,a2/4可能是奇数。

那么设a=4k,其中k为正整数。

两个相差为2的奇数互质。其他同上。

完。

 

 

 

是否有无穷多组基本勾股数

原文:https://www.cnblogs.com/azureice/p/primitive-Pythagorean-triple.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!