<span style="color:#6633ff;">/* G - 二分 Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit Status Description Given n points (1 dimensional) and q segments, you have to find the number of points that lie in each of the segments. A point pi will lie in a segment A B if A ≤ pi ≤ B. For example if the points are 1, 4, 6, 8, 10. And the segment is 0 to 5. Then there are 2 points that lie in the segment. Input Input starts with an integer T (≤ 5), denoting the number of test cases. Each case starts with a line containing two integers n (1 ≤ n ≤ 105) and q (1 ≤ q ≤ 50000). The next line contains n space separated integers denoting the points in ascending order. All the integers are distinct and each of them range in [0, 108]. Each of the next q lines contains two integers Ak Bk (0 ≤ Ak ≤ Bk ≤ 108) denoting a segment. Output For each case, print the case number in a single line. Then for each segment, print the number of points that lie in that segment. Sample Input 1 5 3 1 4 6 8 10 0 5 6 10 7 100000 Sample Output Case 1: 2 3 2 Hint Dataset is huge, use faster I/O methods. By Grant Yuan 2014.7.16 */ #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; int t; long long low,high,mid,ans; int n,m; int a[100005]; long long x,y; int ct=1; int main() {int l,r; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); for(int i=0;i<n;i++) { scanf("%d",&a[i]); } printf("Case %d:\n",ct++); while(m--){ scanf("%d%d",&x,&y); if(x<a[0]) l=0; else {l=lower_bound(a,a+n,x)-a; } if(y>a[n-1]) r=n; else {r=upper_bound(a,a+n,y)-a; } printf("%d\n",r-l);}} return 0; } </span>
二分lower_bound()与upper_bound()的运用,布布扣,bubuko.com
二分lower_bound()与upper_bound()的运用
原文:http://blog.csdn.net/yuanchang_best/article/details/37876887