The scatter-loading mechanism enables you to specify the memory map of an image to the linker using a description in a text file.
Scatter-loading is usually required for implementing embedded systems because these use ROM, RAM, and memory-mapped peripherals.
For images with a simple memory map, you can specify the memory map using only linker command-line options, or with a scatter file.
LOAD_ROM 0x0000 0x8000 ; Name of load region (LOAD_ROM), ; Start address for load region (0x0000), ; Maximum size of load region (0x8000) { 0x0000 0x8000 ; Name of first exec region (EXEC_ROM), ; Start address for exec region (0x0000), ; Maximum size of first exec region (0x8000) { * (+RO) ; Place all code and RO data into ; this exec region } SRAM 0x10000 0x6000 ; Name of second exec region (SRAM), ; Start address of second exec region (0x10000), ; Maximum size of second exec region (0x6000) { * (+RW, +ZI) ; Place all RW and ZI data into ; this exec region } }
armlink --ro_base 0x0 --rw_base 0x10000
For images with a complex memory map, you cannot specify the memory map using only linker command-line options. Such images require the use of a scatter file.
LOAD_ROM_1 0x0000 ; Start address for first load region (0x0000) { EXEC_ROM_1 0x0000 ; Start address for first exec region (0x0000) { program1.o (+RO) ; Place all code and RO data from ; program1.o into this exec region } DRAM 0x18000 0x8000 ; Start address for this exec region (0x18000), ; Maximum size of this exec region (0x8000) { program1.o (+RW, +ZI) ; Place all RW and ZI data from ; program1.o into this exec region } } LOAD_ROM_2 0x4000 ; Start address for second load region (0x4000) { EXEC_ROM_2 0x4000 { program2.o (+RO) ; Place all code and RO data from ; program2.o into this exec region } SRAM 0x8000 0x8000 { program2.o (+RW, +ZI) ; Place all RW and ZI data from ; program2.o into this exec region } }
*
or .ANY
specifier to place leftover code and data.In devices with the ARMv7-M architecture, the SRAM and Peripheral regions each have a bit-band feature.
0x20000001
, you can use the address 0x22000054
.Table 7-1 ARMv7-M bit-band regions and aliases
Memory region
|
Description
|
Address range
|
---|---|---|
SRAM
|
Bit-band region
|
0x20000000-0x200FFFFF
|
Bit-band alias
|
0x22000000-0x23FFFFFF
|
|
Peripheral
|
Bit-band region
|
0x40000000-0x400FFFFF
|
Bit-band alias
|
0x42000000-0x43FFFFFF
|
FLASH_LOAD 0x20000000 { RW 0x20000000 ; RW data at the start of bit band region { * (+RW-DATA) } RO +0 FIXED ; Followed by the RO Data { * (+RO-DATA) } CODEDATA +0 ; Followed by everything else { * (+RO-CODE) * (+ZI) ; ZI follows straight after } ARM_LIB_HEAP +0 EMPTY 0x10000 ; heap starts after that { } ARM_LIB_STACK 0x20100000 EMPTY -0x10000 ; stack starts at the ; top of bit band region { } }
There are various methods available to place functions and data at specific addresses.
__at
sections.__attribute__((at(address
)))
to place variables in a separate section at a specific address.__attribute__((section("name
")))
to place functions and variables in a named section.AREA
directive from assembly language. In assembly code, the smallest locatable unit is an AREA
.--split_sections
compiler option to generate one ELF section for each function in the source file.armlink --remove
.#include <stdio.h> extern int sqr(int n1); int gSquared __attribute__((at(0x5000))); // Place at 0x5000 int main() { gSquared=sqr(3); printf("Value squared is: %d\n", gSquared); }
int sqr(int n1) { return n1*n1; }
armcc -c -g function.c armcc -c -g main.c armlink --map function.o main.o -o squared.axf
--map
option displays the memory map of the image. Also, --autoat
is the default.__attribute__((at(0x5000
)))
specifies that the global variable gSquared
is to be placed at the absolute address 0x5000
. gSquared
is placed in the execution region ER$$.ARM.__at_0x00005000
and load region LR$$.ARM.__at_0x00005000
.0x5000
in the source file, the region names and section name addresses are normalized to eight hexadecimal digits.… Load Region LR$$.ARM.__at_0x00005000 (Base: 0x00005000, Size: 0x00000000, Max: 0x00000004, ABSOLUTE) Execution Region ER$$.ARM.__at_0x00005000 (Base: 0x00005000, Size: 0x00000004, Max: 0x00000004, ABSOLUTE, UNINIT) Base Addr Size Type Attr Idx E Section Name Object 0x00005000 0x00000004 Zero RW 13 .ARM.__at_0x00005000 main.o
#include <stdio.h> extern int sqr(int n1); int gSquared __attribute__((section("foo"))); // Place in section foo int main() { gSquared=sqr(3); printf("Value squared is: %d\n", gSquared); }
int sqr(int n1) { return n1*n1; }
LR1 0x0000 0x20000 { ER1 0x0 0x2000 { *(+RO) ; rest of code and read-only data } ER2 0x8000 0x2000 { main.o } ER3 0x10000 0x2000 { function.o *(foo) ; Place gSquared in ER3 } ; RW and ZI data to be placed at 0x200000 RAM 0x200000 (0x1FF00-0x2000) { *(+RW, +ZI) } ARM_LIB_STACK 0x800000 EMPTY -0x10000 { } ARM_LIB_HEAP +0 EMPTY 0x10000 { } }
ARM_LIB_STACK
and ARM_LIB_HEAP
regions are required because the program is being linked with the semihosting libraries.armcc -c -g function.c armcc -c -g main.c armlink --map --scatter=scatter.scat function.o main.o -o squared.axf
--map
option displays the memory map of the image. Also, --autoat
is the default.__attribute__((section("foo")))
specifies that the global variable gSquared
is to be placed in a section called foo
. The scatter file specifies that the section foo
is to be placed in the ER3
execution region.Load Region LR1 (Base: 0x00000000, Size: 0x00001570, Max: 0x00020000, ABSOLUTE) … Execution Region ER3 (Base: 0x00010000, Size: 0x00000010, Max: 0x00002000, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00010000 0x0000000c Code RO 3 .text function.o 0x0001000c 0x00000004 Data RW 15 foo main.o …
*(foo)
from the scatter file, the section is placed in the region of the same type. That is RAM
in this example.#include <stdio.h> extern int sqr(int n1); // Place at address 0x10000 const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3; int main() { int squared; squared=sqr(gValue); printf("Value squared is: %d\n", squared); }
int sqr(int n1) { return n1*n1; }
LR1 0x0 { ER1 0x0 { *(+RO) ; rest of code and read-only data } ER2 +0 { function.o *(.ARM.__at_0x10000) ; Place gValue at 0x10000 } ; RW and ZI data to be placed at 0x200000 RAM 0x200000 (0x1FF00-0x2000) { *(+RW, +ZI) } ARM_LIB_STACK 0x800000 EMPTY -0x10000 { } ARM_LIB_HEAP +0 EMPTY 0x10000 { } }
ARM_LIB_STACK
and ARM_LIB_HEAP
regions are required because the program is being linked with the semihosting libraries.armcc -c -g function.c armcc -c -g main.c armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf
--map
option displays the memory map of the image.ER2
execution region at address 0x10000
:… Execution Region ER2 (Base: 0x00001578, Size: 0x0000ea8c, Max: 0xffffffff, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00001578 0x0000000c Code RO 3 .text function.o 0x00001584 0x0000ea7c PAD 0x00010000 0x00000004 Data RO 15 .ARM.__at_0x10000 main.o …
ER1
is uknown. Therefore, gValue
might be placed in ER1
or ER2
. To make sure that gValue
is placed in ER2
, you must include the corresponding selector in ER2
and link with the --no_autoat
command-line option. If you omit --no_autoat
, gValue
is to placed in a separate load region LR$$.ARM.__at_0x10000
that contains the execution region ER$$.ARM.__at_0x.ARM.__at_0x10000
.These examples show the operation of the placement algorithms for RO-CODE
sections in sections.o.
Table 7-2 Input section properties for placement of .ANY sections
Name | Size |
---|---|
sec1 |
0x4 |
sec2 |
0x4 |
sec3 |
0x4 |
sec4 |
0x4 |
sec5 |
0x4 |
sec6 |
0x4 |
LR 0x100 { ER_1 0x100 0x10 { .ANY } ER_2 0x200 0x10 { .ANY } }
--any_contingency
disabled..ANY(+R0)
and have no priority.Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000100 0x00000004 Code RO 1 sec1 sections.o 0x00000104 0x00000004 Code RO 2 sec2 sections.o 0x00000108 0x00000004 Code RO 3 sec3 sections.o 0x0000010c 0x00000004 Code RO 4 sec4 sections.o Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000200 0x00000004 Code RO 5 sec5 sections.o 0x00000204 0x00000004 Code RO 6 sec6 sections.o
first_fit
the linker first assigns all the sections it can to ER_1
, then moves on to ER_2
because that is the next available region.next_fit
the linker does the same as first_fit
. However, when ER_1
is full it is marked as FULL
and is not considered again. In this example, ER_1
is completely full. ER_2
is then considered.best_fit
the linker assigns sec1
to ER_1
. It then has two regions of equal priority and specificity, but ER_1
has less space remaining. Therefore, the linker assigns sec2
to ER_1
, and continues assigning sections until ER_1
is full.worst_fit
algorithm.Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000100 0x00000004 Code RO 1 sec1 sections.o 0x00000104 0x00000004 Code RO 3 sec3 sections.o 0x00000108 0x00000004 Code RO 5 sec5 sections.o Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000200 0x00000004 Code RO 2 sec2 sections.o 0x00000204 0x00000004 Code RO 4 sec4 sections.o 0x00000208 0x00000004 Code RO 6 sec6 sections.o
sec1
to ER_1
. It then has two equally specific and priority regions. It assigns sec2
to the one with the most free space, ER_2
in this example. The regions now have the same amount of space remaining, so the linker assigns sec3
to the first one that appears in the scatter file, that is ER_1
.worst_fit
is the default behavior in this version of the linker, and it is the only algorithm available and earlier linker versions.This example shows the operation of the next_fit
placement algorithm for RO-CODE
sections in sections.o.
Table 7-3 Input section properties for placement of sections with next_fit
Name | Size |
---|---|
sec1 |
0x14 |
sec2 |
0x14 |
sec3 |
0x10 |
sec4 |
0x4 |
sec5 |
0x4 |
sec6 |
0x4 |
LR 0x100 { ER_1 0x100 0x20 { .ANY1(+RO-CODE) } ER_2 0x200 0x20 { .ANY2(+RO) } ER_3 0x300 0x20 { .ANY3(+RO) } }
--any_contingency
disabled.next_fit
algorithm is different to the others in that it never revisits a region that is considered to be full. This example also shows the interaction between priority and specificity of selectors - this is the same for all the algorithms.Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000100 0x00000014 Code RO 1 sec1 sections.o Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000200 0x00000010 Code RO 3 sec3 sections.o 0x00000210 0x00000004 Code RO 4 sec4 sections.o 0x00000214 0x00000004 Code RO 5 sec5 sections.o 0x00000218 0x00000004 Code RO 6 sec6 sections.o Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x00000300 0x00000014 Code RO 2 sec2 sections.o
sec1
in ER_1
because ER_1
has the most specific selector. ER_1
now has 0x6
bytes remaining.sec2
in ER_1
, because it has the most specific selector, but there is not enough space. Therefore, ER_1
is marked as full and is not considered in subsequent placement steps. The linker chooses ER_3
for sec2
because it has higher priority than ER_2
.sec3
in ER_3
. It does not fit, so ER_3
is marked as full and the linker places sec3
in ER_2
.sec4
. This is 0x4
bytes so it can fit in either ER_1
or ER_3
. Because both of these sections have previously been marked as full, they are not considered. The linker places all remaining sections in ER_2
.sec7
of size 0x8
exists, and is processed after sec6
the example fails to link. The algorithm does not attempt to place the section in ER_1
or ER_3
because they have previously been marked as full.You can place code and data by separating them into their own objects without having to use toolchain-specific pragmas or attributes.
__attribute__((section("name
")))
to place an item in a separate ELF section. You can then use a scatter file to place the named sections at specific locations.__attribute__((section("name
")))
to place a variable in a separate section:__attribute__((section("name
")))
to specify the named section where the variable is to be placed, for example:int variable __attribute__((section("foo"))) = 10;
FLASH 0x24000000 0x4000000 { … ; rest of code ADDER 0x08000000 { file.o (foo) ; select section foo from file.o } }
FLASH
load region:… Load Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000, ABSOLUTE) Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE) Base Addr Size Type Attr Idx E Section Name Object 0x08000000 0x00000004 Data RW 16 foo file.o …
--autoat
or --no_autoat
does not affect the placement.ER_RW
execution region of the LR_1
load region.foo
selector, then the section is placed in the defined RW execution region..ARM.__at_address
as the section name. For example, to place the function sqr
at 0x20000
, specify:int sqr(int n1) __attribute__((section(".ARM.__at_0x20000"))); int sqr(int n1) { return n1*n1; }
原文:https://www.cnblogs.com/qiyuexin/p/9025096.html