首页 > Web开发 > 详细

使用.NET Core与Google Optimization Tools实现加工车间任务规划

时间:2018-05-15 01:13:13      阅读:435      评论:0      收藏:0      [点我收藏+]

前一篇文章《使用.NET Core与Google Optimization Tools实现员工排班计划Scheduling》算是一种针对内容的规划,而针对时间顺序任务规划,加工车间的工活儿是一个典型的场景。在加工车间有不同的工活儿,一般称为作业,每种作业都有多道工序,每道工序只能在特定的机器上完成。工序有不同的时长,而且是不能更改先后的。这些作业正是制造车间大规模生产线的任务,比如汽车零件制造。问题就是,工厂需要做一个最优的规划,使得作业严格按工序进行的前提下,消耗的时间最短,这样就保证了生产效率是最佳的。如果想做到最优规划,以下约束必不可少:

1. 在作业中必须要前一道工序完成才能进行下一道工序。

2. 对于一台机器,一次只能支持一个作业中的一道工序的运转。

3. 对于每道工序,一旦开始就必须完整地结束。

案例背景


以下是某个车间的作业情况,job代表作业,(m,p)代表了工序,其中m表示从0开始的机器编号,p代表了这道工序需要消耗的时长。本文假设了一个作业计划:

job 0 =  [(0, 3), (1, 2), (2, 2)]

job 1 =  [(0, 2), (2, 1), (1, 4)]

job 2 =  [(1, 4), (2, 3)]

如上所示,job 0有三道工序,第一道工序在0号机器用掉3个单位时长,第二道在1号机器用掉2个单位时长,第三道在2号机器用掉2个单位时长,以此类推,总共八道工序。

解决方案


有一种解决方案如下图,在一个时间轴上,每道工序有一个开始时间,占据一定的时长代表消耗部分,互相不会重叠,所有工序安置完毕,最长的地方就是整个作业全部完成的时长。

技术分享图片

上图给了一个示范,一共消耗12个单位时长,当然这也不是最优的,后面通过编码我们再计算出最优的结果。

定义约束


首先我们将工序时长定义为task(i, j),表示job i的第j道工序,定义ti, j表示task(i, j)开始的时间点。有了这两种定义,按照之间的要求,于是有了如下的关系约束:

1. 连接约束,对于同一个作业,前一道工序加上消耗的时长就是后一道工序。比如,对于作业job 0来说,t0, 2表示第二道工序开始的位置,最多消耗2个单位时长之后,就是第三道工序的位置,即:t0, 2   + 2  ≤  t0, 3。

2. 非连接约束,对于不同的作业,要保证前一道工序完成后才能进行下一道工序。比如在1号的机器上有task(0, 2)和task(2, 1),它们消耗的时长分别是2和4个单位,那么就有:

 t0, 2   + 2  ≤  t2, 1     如果task(0, 2)在task(2, 1)前运行的话

或者

t2, 1   + 4  ≤  t0, 2      如果task(2, 1)在task(0, 2)前运行的话

基于这个关系,前面案例的作业计划的约束关系如图所示:

技术分享图片

带箭头的实线表示了每个作业的工序,有连接约束的情况,而虚线表示了非连接约束的情况,实线有箭头是因为每个作业的工序是确定的,而虚线没有箭头也就说明顺序是没有确定的,这也正是我们要通过规划解决的问题。

最终求解目标


如果假定pi, j表示task(i, j)的消耗时长,那么我们要解决的全局问题就是在所有task都完成后,求一个maxi, j  ti, j +  pi, j的最小值,表示生产效率最优的结果。

代码分解


看过本文开头谈到的前一篇文章后,对于项目初始化和相同的基本概念就不再介绍了。

首先定义一些初始化用的值。

// 创建约束求解器.
var solver = new Solver("jobshop");
var machines_count = 3;
var jobs_count = 3;
var all_machines = Enumerable.Range(0, machines_count);
var all_jobs = Enumerable.Range(0, jobs_count);

再定义出所有的工序。MakeFixedDurationIntervalVar就是OR-Tools专门用来创建间隔时间的变量类型。

// 将任务拆分成对应的机器和用时的结构
// job 0 = [(0, 3), (1, 2), (2, 2)]
// job 1 = [(0, 2), (2, 1), (1, 4)]
// job 2 = [(1, 4), (2, 3)]
var machines = new int[][]
{
    new[] { 0, 1, 2 },
    new[] { 0, 2, 1 },
    new[] { 1, 2 }
};

var processing_times = new int[][]
{
    new[] { 3, 2, 2 },
    new[] {2, 1, 4 },
    new[] { 4, 3 }
};

// 计算总用时
var horizon = 0;
foreach (var i in all_jobs)
    horizon += processing_times[i].Sum();

// 创建工序变量
var all_tasks = new Dictionary<(int, int), IntervalVar>();
foreach (var i in all_jobs)
{
    foreach (var j in Enumerable.Range(0, machines[i].Length))
    {
        all_tasks[(i, j)] = solver.MakeFixedDurationIntervalVar(0,
                                                    horizon,
                                                    processing_times[i][j],
                                                    false,
                                                    $"Job_{i}_{j}");
    }
}

然后定义连接约束和非连接约束,MakeDisjunctiveConstraints专门用来创建非连接约束的,StartsAfterEnd专门用来创建连接约束。

// 创建连接的顺序变量及连接关系
var all_sequences = new SequenceVarVector();
//var all_machines_jobs = new List<IntervalVar>();
foreach (var i in all_machines)
{
    var machines_jobs = new IntervalVarVector();
    foreach (var j in all_jobs)
    {
        foreach (var k in Enumerable.Range(0, machines[j].Length))
        {
            if (machines[j][k] == i)
            {
                machines_jobs.Add(all_tasks[(j, k)]);
            }
        }
    }
    var disj = solver.MakeDisjunctiveConstraint(machines_jobs, $"machine {i}");
    all_sequences.Add(disj.SequenceVar());
    solver.Add(disj);
}

// 定义连接约束
foreach (var i in all_jobs)
{
    foreach (var j in Enumerable.Range(0, machines[i].Length - 1))
    {
        solver.Add(all_tasks[(i, j + 1)].StartsAfterEnd(all_tasks[(i, j)]));
    }
}

重点的部分,就是创建求解目标了。MakeMinimize用来求最小值,第二个参数表示每次移动的步长,直到有解为止。

// 创建求解的极值目标
var end_tasks = new IntVarVector();
foreach (var i in all_jobs)
{
    end_tasks.Add(all_tasks[(i, machines[i].Length - 1)].EndExpr().Var());
}
var obj_var = solver.MakeMax(end_tasks);
var objective_monitor = solver.MakeMinimize(obj_var.Var(), 1);

// 创建求解的对象
var sequence_phase = solver.MakePhase(all_sequences.ToArray(), Solver.SEQUENCE_DEFAULT);
var vars_phase = solver.MakePhase(new[] { obj_var.Var() }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
var main_phase = solver.Compose(new[] { sequence_phase, vars_phase });

最后是显示最优解结果的部分。

// 创建最后一个解决方案
var collector = solver.MakeLastSolutionCollector();

// 添加需要关注的变量
collector.Add(all_sequences.ToArray());
collector.AddObjective(obj_var.Var());

foreach (var i in all_machines)
{
    var sequence = all_sequences[i];
    var sequence_count = sequence.Size();
    for (var j = 0; j < sequence_count; j++)
    {
        var t = sequence.Interval(j);
        collector.Add(t.StartExpr().Var());
        collector.Add(t.EndExpr().Var());
    }
}

// 显示结果
var disp_col_width = 10;
if (solver.Solve(main_phase, new SearchMonitor[] { objective_monitor, collector }))
{
    Console.WriteLine("\nOptimal Schedule Length: {0}\n", collector.ObjectiveValue(0));
    var sol_line = "";
    var sol_line_tasks = "";
    Console.WriteLine("Optimal Schedule\n");

    foreach (var i in all_machines)
    {
        var seq = all_sequences[i];
        sol_line += $"Machine {i}: ";
        sol_line_tasks += $"Machine {i}: ";
        var sequence = collector.ForwardSequence(0, seq);
        var seq_size = sequence.Count;

        foreach (var j in Enumerable.Range(0, seq_size))
        {
            var t = seq.Interval(sequence[j]);
            sol_line_tasks += t.Name().PadRight(disp_col_width,  );
        }

        foreach (var j in Enumerable.Range(0, seq_size))
        {
            var t = seq.Interval(sequence[j]);
            var sol_tmp = $"[{collector.Value(0, t.StartExpr().Var())},{collector.Value(0, t.EndExpr().Var())}]";
            sol_line += sol_tmp.PadRight(disp_col_width,  );
        }
        sol_line += "\n";
        sol_line_tasks += "\n";
    }
    Console.WriteLine(sol_line_tasks);
    Console.WriteLine("Time Intervals for Tasks\n");
    Console.WriteLine(sol_line);
}

运行后结果如下:

技术分享图片

可以看到,这一次求得了最优解,与前面给的示范的结果不一样了,总时长上更少,是11而不是12了。对应的图解是这样:

技术分享图片

是不是觉得很有趣,跃跃欲试了!动手做就是最好的开始。

最后放出完整代码:

using Google.OrTools.ConstraintSolver;
using System;
using System.Collections.Generic;
using System.Linq;

public class ConsoleApp1
{
    static void Main()
    {
        // 创建约束求解器.
        var solver = new Solver("jobshop");
        var machines_count = 3;
        var jobs_count = 3;
        var all_machines = Enumerable.Range(0, machines_count);
        var all_jobs = Enumerable.Range(0, jobs_count);

        // 将任务拆分成对应的机器和用时的结构
        // job 0 = [(0, 3), (1, 2), (2, 2)]
        // job 1 = [(0, 2), (2, 1), (1, 4)]
        // job 2 = [(1, 4), (2, 3)]
        var machines = new int[][]
        {
            new[] { 0, 1, 2 },
            new[] { 0, 2, 1 },
            new[] { 1, 2 }
        };

        var processing_times = new int[][]
        {
            new[] { 3, 2, 2 },
            new[] {2, 1, 4 },
            new[] { 4, 3 }
        };

        // 计算总用时
        var horizon = 0;
        foreach (var i in all_jobs)
            horizon += processing_times[i].Sum();

        // 创建工序变量
        var all_tasks = new Dictionary<(int, int), IntervalVar>();
        foreach (var i in all_jobs)
        {
            foreach (var j in Enumerable.Range(0, machines[i].Length))
            {
                all_tasks[(i, j)] = solver.MakeFixedDurationIntervalVar(0,
                                                          horizon,
                                                          processing_times[i][j],
                                                          false,
                                                          $"Job_{i}_{j}");
            }
        }

        // 创建连接的顺序变量及连接关系
        var all_sequences = new SequenceVarVector();
        //var all_machines_jobs = new List<IntervalVar>();
        foreach (var i in all_machines)
        {
            var machines_jobs = new IntervalVarVector();
            foreach (var j in all_jobs)
            {
                foreach (var k in Enumerable.Range(0, machines[j].Length))
                {
                    if (machines[j][k] == i)
                    {
                        machines_jobs.Add(all_tasks[(j, k)]);
                    }
                }
            }
            var disj = solver.MakeDisjunctiveConstraint(machines_jobs, $"machine {i}");
            all_sequences.Add(disj.SequenceVar());
            solver.Add(disj);
        }

        // 定义连接约束
        foreach (var i in all_jobs)
        {
            foreach (var j in Enumerable.Range(0, machines[i].Length - 1))
            {
                solver.Add(all_tasks[(i, j + 1)].StartsAfterEnd(all_tasks[(i, j)]));
            }
        }

        // 创建求解的极值目标
        var end_tasks = new IntVarVector();
        foreach (var i in all_jobs)
        {
            end_tasks.Add(all_tasks[(i, machines[i].Length - 1)].EndExpr().Var());
        }
        var obj_var = solver.MakeMax(end_tasks);
        var objective_monitor = solver.MakeMinimize(obj_var.Var(), 1);

        // 创建求解的对象
        var sequence_phase = solver.MakePhase(all_sequences.ToArray(), Solver.SEQUENCE_DEFAULT);
        var vars_phase = solver.MakePhase(new[] { obj_var.Var() }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
        var main_phase = solver.Compose(new[] { sequence_phase, vars_phase });

        // 创建最后一个解决方案
        var collector = solver.MakeLastSolutionCollector();

        // 添加需要关注的变量
        collector.Add(all_sequences.ToArray());
        collector.AddObjective(obj_var.Var());

        foreach (var i in all_machines)
        {
            var sequence = all_sequences[i];
            var sequence_count = sequence.Size();
            for (var j = 0; j < sequence_count; j++)
            {
                var t = sequence.Interval(j);
                collector.Add(t.StartExpr().Var());
                collector.Add(t.EndExpr().Var());
            }
        }

        // 显示结果
        var disp_col_width = 10;
        if (solver.Solve(main_phase, new SearchMonitor[] { objective_monitor, collector }))
        {
            Console.WriteLine("\nOptimal Schedule Length: {0}\n", collector.ObjectiveValue(0));
            var sol_line = "";
            var sol_line_tasks = "";
            Console.WriteLine("Optimal Schedule\n");

            foreach (var i in all_machines)
            {
                var seq = all_sequences[i];
                sol_line += $"Machine {i}: ";
                sol_line_tasks += $"Machine {i}: ";
                var sequence = collector.ForwardSequence(0, seq);
                var seq_size = sequence.Count;

                foreach (var j in Enumerable.Range(0, seq_size))
                {
                    var t = seq.Interval(sequence[j]);
                    sol_line_tasks += t.Name().PadRight(disp_col_width,  );
                }

                foreach (var j in Enumerable.Range(0, seq_size))
                {
                    var t = seq.Interval(sequence[j]);
                    var sol_tmp = $"[{collector.Value(0, t.StartExpr().Var())},{collector.Value(0, t.EndExpr().Var())}]";
                    sol_line += sol_tmp.PadRight(disp_col_width,  );
                }
                sol_line += "\n";
                sol_line_tasks += "\n";
            }
            Console.WriteLine(sol_line_tasks);
            Console.WriteLine("Time Intervals for Tasks\n");
            Console.WriteLine(sol_line);
        }
    }
}

 

 

 

使用.NET Core与Google Optimization Tools实现加工车间任务规划

原文:https://www.cnblogs.com/BeanHsiang/p/9029177.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!