首页 > 其他 > 详细

【NOIP2016提高A组8.12】奇袭

时间:2018-05-15 23:51:33      阅读:248      评论:0      收藏:0      [点我收藏+]

题目

由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试——魔界入侵。
唯一一个神一般存在的Administrator被消灭了,靠原本的整合骑士的力量是远远不够的。所以爱丽丝动员了UW全体人民,与整合骑士一起抗击魔族。
在UW的驻地可以隐约看见魔族军队的大本营。整合骑士们打算在魔族入侵前发动一次奇袭,袭击魔族大本营!
为了降低风险,爱丽丝找到了你,一名优秀斥候,希望你能在奇袭前对魔族大本营进行侦查,并计算出袭击的难度。
经过侦查,你绘制出了魔族大本营的地图,然后发现,魔族大本营是一个N×N的网格图,一共有N支军队驻扎在一些网格中(不会有两只军队驻扎在一起)。
在大本营中,每有一个k×k(1≤k≤N)的子网格图包含恰好k支军队,我们袭击的难度就会增加1点。
现在请你根据绘制出的地图,告诉爱丽丝这次的袭击行动难度有多大。

分析

想到,可以把题目简化为在一段数中,选择一段区间,使的该区间的数连续,求方案数。
接着可以进一步转换为在一段数中,选择相邻k个数,使得这k个数中的最大值减去最小值等于k-1,求方案数。
然后考虑如何解决这个问题。
我们用分治的思想。
对于一段区间,左边界为l,右边界为r
技术分享图片
那么这一段区间的答案\(ans(l,r)=ans(l,mid)+ans(mid+1,r)+这k个数穿过mid的方案数\)
首先知道一个合法的区间\([i,j]\)\(j-i=区间[i,j]中的最大值-区间[i,j]中的最小值\)
这里分两种情况:

最大最小值都在同一侧

现在假设都在左侧的情况,即在区间\([l,mid]\)中。右侧的情况自己思考。
先定义:

mal[x]:表示区间[x,mid]中的最大值(x在区间[l,mid]中)
mil[x]:表示区间[x,mid]中的最小值(x在区间[l,mid]中)
mar[x]:表示区间[mid+1,x]中的最大值(x在区间[mid+1,r]中)
mir[x]:表示区间[mid+1,x]中的最小值(x在区间[mid+1,r]中)

我们枚举一个i,i从mid向l移动。设j为区间的右边界
因为最大最小值都在左侧,
根据合法区间的定义,
可以轻松求出j,\(j=i+mal[i]-mil[i]\)
技术分享图片
但是j不一定是合法的,
1、j必须在区间\([mid+1,r]\)之间
2、mar[j]必须小于mal[i],mir[j]必须大于mil[i],否则最大最小值就不都在左侧了。
右侧的情况类似。

最大最小值在异侧

现在假设最大值在右侧,即在区间\([mid+1,r]\)中;现在假设最小值在右侧,即在区间\([l,mid]\)中。
我们同样枚举一个i,i从mid向l移动。设j为区间的右边界
技术分享图片
我们再定义两个指针z和z1从mid+1向r移动。
因为最大值在右侧,所以mal[i]应该小于mar[z],那么当mal[i]>mar[z]时,将指针z向右移;因为mal和mar都是单调的,对于当前的i,因为区间mar[z-1]一定小于mal[i],都是不合法的。
又因为最小值在左侧,所以mil[i]应该小于mir[z1],那么当mir[z1]>mil[i]时,将指针z1向右移;因为mil和mir也都是单调的,对于当前的i,因为区间mir[z1-1]一定大于mil[i],都是合法的。
于是区间[z,z1]中的数都有可能是合法的j。
再根据合法区间的定义,移项得到\(mil[i]-i=mar[j]-j\)
定义一个桶t[],
那么当z移动时,经过的点都是不合法的,就将t[mar[z]-z]减去一;
那么当z1移动时,经过的点都是合法的,就将t[mar[z1]-z1]加上一。
技术分享图片
最后,将ans加上t[mil[i]-i]。
桶记住要清零。
另一种情况自己考虑。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=50005;
using namespace std;
int a[N*2],n,mal[N*2],mar[N*2],mil[N*2],mir[N*2],t[N*5],j,z,z1;
int solve(int l,int r)
{
    int mid=(l+r)/2,ans=0;
    if(l!=r) ans=solve(l,mid)+solve(mid+1,r);
        else return 1;
    for(int i=l;i<=r;i++) mar[i]=mal[i]=0,mir[i]=mil[i]=maxlongint;
    for(int i=mid;i>=l;i--)
    {
        mil[i]=min(mil[i+1],a[i]);
        mal[i]=max(mal[i+1],a[i]);
    }
    for(int i=mid+1;i<=r;i++)
    {
        mir[i]=min(mir[i-1],a[i]);
        mar[i]=max(mar[i-1],a[i]);
    }
    //极值都在左边
    for(int i=mid;i>=l;i--)
    {
        j=i+mal[i]-mil[i];
        if((j<=mid) || (j>r)) continue;
        if(mal[i]>mar[j] && mil[i]<mir[j]) ans++;
    }
    //极值都在右边
    for(int i=mid+1;i<=r;i++)
    {
        j=i-mar[i]+mir[i];
        if((j>=mid+1) || (j<l)) continue;
        if(mar[i]>mal[j] && mir[i]<mil[j]) ans++;
    }
    //min在左,max在右
    z=z1=mid+1;
    for(int i=mid;i>=l;i--)
    {
        while(z<=r && mar[z]<mal[i]) 
        {
            t[mar[z]-z+N]--;
            z++;
        }
        while(z1<=r && mir[z1]>mil[i])
        {
            t[mar[z1]-z1+N]++;
            z1++;
        }
        if(t[mil[i]-i+N]>=0)
            ans+=t[mil[i]-i+N];
    }
    for(int i=mid+1;i<=r;i++) t[mar[i]-i+N]=0;
    //max在左,min在右
    z=z1=mid+1;
    for(int i=mid;i>=l;i--)
    {
        while(z1<=r && mir[z1]>mil[i])
        {
            t[mir[z1]+z1+N]--;
            z1++;
        }
        while(z<=r && mal[i]>mar[z])
        {
            t[mir[z]+z+N]++;
            z++;
        }
        if(t[mal[i]+i+N]>=0)
            ans+=t[mal[i]+i+N];
    }
    for(int i=mid+1;i<=r;i++) t[mir[i]+i+N]=0;
    return ans;
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        a[x]=y;
    }
    printf("%d",solve(1,n));
}

【NOIP2016提高A组8.12】奇袭

原文:https://www.cnblogs.com/chen1352/p/9043481.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!