首页 > 其他 > 详细

LA 4394

时间:2014-07-18 17:12:08      阅读:1188      评论:0      收藏:0      [点我收藏+]

Description

bubuko.com,布布扣
 

 


There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What‘s the minimum number of operations?

 

Input

Input contains multiple cases. Each case consists of two lines:

 

  • The first line contains string A.
  • The second line contains string B.

The length of both strings will not be greater than 100.

 

Output

A single line contains one integer representing the answer.

 

Sample Input

 

zzzzzfzzzzz 
abcdefedcba 
abababababab 
cdcdcdcdcdcd

 

Sample Output

 

6 
7

令dp[l][r] 为l到r区间从空串刷成b串所需的最少次数
则dp[l][r] = min(dp[l][k] + dp[k + 1][r])
如果 b[l] == b[r] dp[l][r] = min(dp[l][r], dp[l][r - 1])

最后设f[i]为1 到 i从a串刷到b串的最少次数(下标从1开始)
则 f[i] = min(f[j] + dp[j][i - 1])
如果a[i] == b[i]则 f[i] = min(f[i], f[i - 1])

bubuko.com,布布扣
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <vector>
 6 #include <queue>
 7 
 8 using namespace std;
 9 
10 #define read() freopen("sw.in", "r", stdin)
11 
12 const int MAX = 105;
13 char a[MAX], b[MAX];
14 int dp[MAX][MAX];
15 int f[MAX];
16 
17 void solve() {
18         int n = strlen(a);
19         for (int len = 1; len <= n; ++len) {
20                 for (int l = 0; l + len - 1 < n; ++l) {
21                         int r = l + len - 1;
22                         dp[l][r] = len;
23                         if (l == r) {
24                                 dp[l][r] = 1;
25                                 continue;
26                         }
27                         for (int k = l; k <= r; ++k) {
28                                 if (k + 1 > r) continue;
29                                 dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]);
30                         }
31                         if (b[l] == b[r]) dp[l][r] = min(dp[l][r - 1], dp[l][r]);
32                         //printf("l = %d r = %d %d\n", l, r, dp[l][r]);
33                 }
34         }
35 
36         for (int i = 0; i < n; ++i) {
37                 f[i + 1] = dp[0][i];
38                 if (a[i] == b[i]) f[i + 1] = min(f[i + 1], f[i]);
39                 for (int j = 0; j < i; ++j) {
40                         if (j + 1 > i) continue;
41                         f[i + 1] = min(f[i + 1], f[j + 1] + dp[j + 1][i]);
42                 }
43         }
44 
45         //for (int i = 0; i < n; ++i) printf("%d ", f[i]);
46         printf("%d\n", f[n]);
47 
48 
49 }
50 
51 int main()
52 {
53 
54     int t;
55     //read();
56     while (scanf("%s%s", a, b) != EOF) {
57            solve();
58     }
59     //cout << "Hello world!" << endl;
60     return 0;
61 }
View Code

 

LA 4394,布布扣,bubuko.com

LA 4394

原文:http://www.cnblogs.com/hyxsolitude/p/3850819.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!