首页 > 其他 > 详细

【NOIP2017提高组模拟6.27】C

时间:2018-05-22 14:21:13      阅读:235      评论:0      收藏:0      [点我收藏+]

题目

蜘蛛精大爷是世界上最爷的爷,ta的图论专著《蜘蛛精大爷教你学做人OI之图论》正在热卖,只要233美元一本,每人限购一本。。。。。。在某弱的不懈要求下,ta给某弱出了一道题,然而某弱太弱了,只好向你求助。
给你一张n个结点,m条边的无向图,每个结点都有一个整数权值。你需要执行一系列操作。操作分为三种,如下表所示。
操作
D x (1<=x<=m)
删除编号为x的边。输入保证每条边至多被删除一次。
Q x k (1<=x<=n)
计算出结点x所在的联通块中,第k大的权值。如果不存在,输出0。
C x v (1<=x<=n)
把结点x的权值改为v。
操作序列的结束标志为单个字母E。结点编号为1到n,边的编号为1到m。

分析

考虑到,求第k大,我们可以用权值线段树,
线段树分裂很麻烦,
所以,倒过来做。
首先先将没有被删除的边加入,用并查集维护,
对于每一个联通块开一棵线段树,
在将经过多次修改后的权值扔进这个节点所在的联通块的线段树。
这就是初始化了。
每当有D操作,如果这条边两边的点不在同一个联通块,用并查集并在一起,并将两个联通块的线段树合并。
Q操作就直接查询,记录在一个数组,最后倒着输出。
C操作,就在线段树中删除该值,加入修改的值。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647ll;
const long long mo=1000000007;
const long long N=2000005;
const long long M=60010;
using namespace std;
long long tr[N][2],root[N],fa[N],b[N][2],size[N],n,m,re[N][3],tot,num,sum,d[N+10],t,v[N];
long long ans[N];
bool bz[N]={0};
long long read(long long &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
void put(long long v,long long l,long long r,long long x,long long y)
{
    if(l==r)
    {
        size[v]+=y;
        return;
    } 
    long long mid=(l+r)/2;
    if(x<=mid)
    {
        if(!tr[v][0]) tr[v][0]=++tot;
        put(tr[v][0],l,mid,x,y);
    }
    else
    {
        if(!tr[v][1]) tr[v][1]=++tot;
        put(tr[v][1],mid+1,r,x,y);
    }
    size[v]+=y;
}
long long get(long long x)
{
    if(fa[x]==x) return x;
    return (fa[x]=get(fa[x]));
}
long long mesh(long long x,long long y)  
{
    if (!x) return y;  
    if (!y) return x;  
    size[x]+=size[y];  
    tr[x][0]=mesh(tr[x][0],tr[y][0]);
    tr[x][1]=mesh(tr[x][1],tr[y][1]);
    return x;
}  
bool qq=true;
long long find(long long v,long long l,long long r,long long y)
{
    
    if(l==r) return l;
    long long mid=(l+r)/2;
    if(y<=size[tr[v][1]]) return find(tr[v][1],mid+1,r,y);
    else 
    return find(tr[v][0],l,mid,y-size[tr[v][1]]);
}
int main()
{
    scanf("%lld%lld",&n,&m);
    for(long long i=1;i<=n;i++) 
        read(v[i]),fa[i]=i,root[i]=++tot;
    for(long long i=1;i<=m;i++) 
        for(long long j=0;j<=1;j++) read(b[i][j]);
    while(1)
    {
        char c=getchar();
        while(c!='E' && c!='D' && c!='Q' && c!='C') c=getchar();
        if(c=='E') break;
        read(re[++num][1]);
        if(c=='D') bz[re[num][1]]=true;
        else 
        if(c=='Q') re[num][0]=1,read(re[num][2]);
        else 
        {
            re[num][0]=2,read(re[num][2]);
            long long x=re[num][2];
            re[num][2]=v[re[num][1]];
            v[re[num][1]]=x;
        }
    }   
    long long ff=maxlongint*2;
    for(long long i=1;i<=n;i++) v[i]+=maxlongint;
    for(int i=1;i<=num;i++) 
        if(re[i][0]==2) re[i][2]+=maxlongint;
    for(int i=1;i<=m;i++)
        if(!bz[i]) fa[get(b[i][1])]=get(b[i][0]);
    for(int i=1;i<=n;i++) put(root[get(i)],0,ff,v[i],1);
    for(int i=num;i>=1;i--)
    {
        if(!re[i][0])
        {
            int z=re[i][1],xx=get(b[z][0]),yy=get(b[z][1]);
            if(xx==yy) continue;
            mesh(root[xx],root[yy]);
            fa[yy]=xx;
        }
        else
        if(re[i][0]==1)
        {
            if(re[i][2]>size[root[get(re[i][1])]]) ans[++sum]=maxlongint;
            else ans[++sum]=find(root[get(re[i][1])],0,maxlongint*2,re[i][2]);
            qq=false;
        }
        else
        {
            put(root[get(re[i][1])],0,ff,v[re[i][1]],-1);
            v[re[i][1]]=re[i][2];
            put(root[get(re[i][1])],0,ff,v[re[i][1]],1);
        }
    
    }
    for(int i=sum;i>=1;i--) printf("%lld\n",ans[i]-maxlongint);
}

【NOIP2017提高组模拟6.27】C

原文:https://www.cnblogs.com/chen1352/p/9071422.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!