首页 > Windows开发 > 详细

【APIO2016】【UOJ205】【LOJ2568】烟花表演 可合并堆

时间:2018-05-22 21:17:53      阅读:188      评论:0      收藏:0      [点我收藏+]

题目大意

  有一棵树,每条边都有一个边权,现在你要修改边权,使得修改后根到所有叶子的距离相等。

  要求所有边权非负。

  修改的代价为\(\lvert\)每条边修改前的边权\(-\)修改后的边权\(\rvert\)之和。

  \(n+m\leq 300000\)

题解

  容易发现,设 \(f(x)\) 为根到所有叶子的距离为 \(x\) 时的最小代价,那么 \(f(x)\)是一个下凸函数,并且每一段都是线性的。

  考虑一个点 \(u\) 从儿子 \(v\) 转移过来。这个过程分两步:

  把 \(v\) 的凸包加上 \(u\to v\) 这条边:

   要从 \(f(x)\) 转移到 \(f'(x)\)

   假设原来 \(f(x)\) 的最小值是在 \([l,r]\) 时取到的,那么:

    \(x\leq l\)\(f'(x)=f(x)+w\):最优方案是把这条边的长度减到 \(0\)(因为边权不能是负数)

    \(l\leq x\leq l+w\)\(f'(x)=f(l)+w-(x-l)\):把这条边的代价减掉\(w-(x-l)\)

    \(l+w\leq x\leq r+w\)\(f'(x)=f(l)\):这条边的代价不需要变

    \(x\geq r+w\)\(f'(x)=f(l)+(x-R)-w\):把这条边的代价减掉\((x-r)-w\)

   那么就是把 \([l,r]\) 这段往右平移,把 \([0,l]\) 这段往上平移,加入一段斜率为 \(1\) 的直线和一段斜率为 \(-1\)的直线。

   考虑怎么维护这个凸包。

   可以发现相邻两段的斜率之差为 \(1\),所以只需要维护凸包上相邻两个线段交点的横坐标即可。

   还可以发现凸包最右边那条直线的斜率就是这个点的儿子个数。

   所以直接把最右边儿子个数 \(-1\) 条个交点弹掉就能找到 \([l,r]\) 了。

  把两个凸包合并:

   直接把所有交点相加就好了。

  那么要怎么计算答案呢?

  先找到 \([l,r]\),然后对于左边的每一个交点 \(v\),它的贡献就是 \(-v\)

  直接相加就好了。

  可以用可合并堆实现,复杂度为 \(O((n+m)\log (n+m))\)

  但是我懒。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
    if(a>b)
        swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
    char str[100];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
    sprintf(str,"%s.out",s);
    freopen(str,"w",stdout);
#endif
}
int rd()
{
    int s=0,c,b=0;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c=='-')
    {
        c=getchar();
        b=1;
    }
    do
    {
        s=s*10+c-'0';
    }
    while((c=getchar())>='0'&&c<='9');
    return b?-s:s;
}
void put(int x)
{
    if(!x)
    {
        putchar('0');
        return;
    }
    static int c[20];
    int t=0;
    while(x)
    {
        c[++t]=x%10;
        x/=10;
    }
    while(t)
        putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
    if(b<a)
    {
        a=b;
        return 1;
    }
    return 0;
}
int upmax(int &a,int b)
{
    if(b>a)
    {
        a=b;
        return 1;
    }
    return 0;
}
int n,m;
ll w[300010];
int f[300010];
int d[300010];
priority_queue<ll> q[300010];
int main()
{
    open("loj2568");
    scanf("%d%d",&n,&m);
    ll ans=0;
    for(int i=2;i<=n+m;i++)
    {
        scanf("%d%lld",&f[i],&w[i]);
        ans+=w[i];
        d[f[i]]++;
    }
    for(int i=n+m;i>=2;i--)
    {
        ll l=0,r=0;
        if(i<=n)
        {
            while(--d[i])
                q[i].pop();
            l=q[i].top();
            q[i].pop();
            r=q[i].top();
            q[i].pop();
        }
        q[i].push(l+w[i]);
        q[i].push(r+w[i]);
        if(q[i].size()>q[f[i]].size())
            q[i].swap(q[f[i]]);
        while(!q[i].empty())
            q[f[i]].push(q[i].top()),q[i].pop();
    }
    while(d[1]--)
        q[1].pop();
    while(!q[1].empty())
        ans-=q[1].top(),q[1].pop();
    printf("%lld\n",ans);
    return 0;
}

【APIO2016】【UOJ205】【LOJ2568】烟花表演 可合并堆

原文:https://www.cnblogs.com/ywwyww/p/9074035.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!