首页 > 编程语言 > 详细

Python:正则表达式

时间:2018-05-23 00:44:38      阅读:207      评论:0      收藏:0      [点我收藏+]

#正则表达式内容非常多,网上的学习资源也是目不暇接,我从中筛选学习并且整理出以下 的学习笔记

一、正则表达式匹配过程:

1.依次拿出表达式和文本中的字符比较

2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败

3.如果表达式中有量词或边界,这个过程会稍微有一些不同

二、语法规则

在正则表达式中,如果直接给出字符,就是精确匹配。

\d可以匹配一个数字,\w可以匹配一个字母或数字,所以:

  • ‘00\d‘可以匹配‘007‘,但无法匹配‘00A‘;
  • ‘\d\d\d‘可以匹配‘010‘;
  • ‘\w\w\d‘可以匹配‘py3‘;

.可以匹配任意字符,所以:

  • ‘py.‘可以匹配‘pyc‘、‘pyo‘、‘py!‘等等。

要匹配变长的字符,在正则表达式中,用*表示任意个字符(包括0个),用+表示至少一个字符,用?表示0个或1个字符,用{n}表示n个字符,用{n,m}表示n-m个字符

来看一个复杂的栗子:\d{3}\s+\d{3,8}

  • \d{3}表示匹配3个数字,例如‘010‘;
  • \s可以匹配一个空格(也包括Tab等空白符),所以\s+表示至少有一个空格,例如匹配‘ ‘,‘ ‘等;
  • \d{3,8}表示3-8个数字,例如‘1234567‘。

综合起来,上面的正则表达式可以匹配以任意个空格隔开的带区号的电话号码。

如果要匹配‘010-12345‘这样的号码呢?由于‘-‘是特殊字符,在正则表达式中,要用‘\‘转义,所以,上面的正则是\d{3}\-\d{3,8}

但是,仍然无法匹配‘010 - 12345‘,因为带有空格。所以我们需要更复杂的匹配方式。

要做更精确地匹配,可以用[]表示范围,比如:

  • [0-9a-zA-Z\_]可以匹配一个数字、字母或者下划线;
  • [0-9a-zA-Z\_]+可以匹配至少由一个数字、字母或者下划线组成的字符串,比如‘a100‘,‘0_Z‘,‘Py3000‘等等;
  • [a-zA-Z\_][0-9a-zA-Z\_]*可以匹配由字母或下划线开头,后接任意个由一个数字、字母或者下划线组成的字符串,也就是Python合法的变量;
  • [a-zA-Z\_][0-9a-zA-Z\_]{0, 19}更精确地限制了变量的长度是1-20个字符(前面1个字符+后面最多19个字符)。

A|B可以匹配A或B,所以(P|p)ython可以匹配‘Python‘或者‘python‘

^表示行的开头,^\d表示必须以数字开头。

$表示行的结束,\d$表示必须以数字结束。

例如:py也可以匹配‘python‘,但是加上^py$就变成了整行匹配,就只能匹配‘py‘了。

三、正则表达式相关注解

1.数量词 * + ?{}等的贪婪模式和费贪婪模式

      正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的0

>>> re.match(r^(\d+)(0*)$, 102300).groups()
(102300, ‘‘)

由于\d+采用贪婪匹配,直接把后面的0全部匹配了,结果0*只能匹配空字符串了。

必须让\d+采用非贪婪匹配(也就是尽可能少匹配),才能把后面的0匹配出来,加个?就可以让\d+采用非贪婪匹配:

>>> re.match(r^(\d+?)(0*)$, 102300).groups()
(1023, 00)

注:我们一般使用非贪婪模式来提取

2.反斜杠问题

正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。

四、re模块

#返回pattern对象
re.compile(string[,flag]) 
#以下为匹配所用函数
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])

pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

pattern = re.compile(rhello)

在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。

#以下介绍是否使用compile的情况

1. 使用re.compile

re模块中包含一个重要函数是compile(pattern [, flags]) ,该函数根据包含的正则表达式的字符串创建模式对象。可以实现更有效率的匹配。在直接使用字符串表示的正则表达式进行search,match和findall操作时,python会将字符串转换为正则表达式对象。而使用compile完成一次转换之后,在每次使用模式的时候就不用重复转换。当然,使用re.compile()函数进行转换后,re.search(pattern, string)的调用方式就转换为 pattern.search(string)的调用方式。

其中,后一种调用方式中,pattern是用compile创建的模式对象。如下:

>>> import re
>>> some_text = ‘a,b,,,,c d‘
>>> reObj = re.compile(‘[, ]+‘)
>>> reObj.split(some_text)
[‘a‘, ‘b‘, ‘c‘, ‘d‘]

2.不使用re.compile

在进行search,match等操作前不适用compile函数,会导致重复使用模式时,需要对模式进行重复的转换。降低匹配速度。而此种方法的调用方式,更为直观。如下:

>>> import re
>>> some_text = ‘a,b,,,,c d‘
>>> re.split(‘[, ]+‘,some_text)
[‘a‘, ‘b‘, ‘c‘, ‘d‘]

(1)re.match(pattern, string[, flags])

这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回 None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对 string向后匹配。

# -*- coding: utf-8 -*-
  
#导入re模块
import re
  
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(rhello)
  
# 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
result1 = re.match(pattern,hello)
result2 = re.match(pattern,helloo CQC!)
result3 = re.match(pattern,helo CQC!)
result4 = re.match(pattern,hello CQC!)
  
#如果1匹配成功
if result1:
  # 使用Match获得分组信息
  print result1.group()
else:
  print 1匹配失败!
  
#如果2匹配成功
if result2:
  # 使用Match获得分组信息
  print result2.group()
else:
  print 2匹配失败!
  
#如果3匹配成功
if result3:
  # 使用Match获得分组信息
  print result3.group()
else:
  print 3匹配失败!
  
#如果4匹配成功
if result4:
  # 使用Match获得分组信息
  print result4.group()
else:
  print 4匹配失败!

#运行结果
hello
hello
3匹配失败!
hello

#下面说明match的对象和方法

属性:
    1.string: 匹配时使用的文本。
    2.re: 匹配时使用的Pattern对象。
    3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
    4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
    5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
    6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

    方法:
    1.group([group1, …]):
    获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
    2.groups([default]):
    以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
    3.groupdict([default]):
    返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
    4.start([group]):
    返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
    5.end([group]):
    返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
    6.span([group]):
    返回(start(group), end(group))。
    7.expand(template):
    将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符‘0‘,只能使用\g0。

# -*- coding: utf-8 -*-
#一个简单的match实例
  
import re
# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r(\w+) (\w+)(?P.*), hello world!)
  
print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r‘\g \g\g‘):", m.expand(r\2 \1\3)
  
# 输出结果
# m.string: hello world!
# m.re: 
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): (‘hello‘, ‘world‘)
# m.groups(): (‘hello‘, ‘world‘, ‘!‘)
# m.groupdict(): {‘sign‘: ‘!‘}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r‘\2 \1\3‘): world hello!

(2)re.search(pattern, string[, flags])

search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。

#导入re模块
import re
  
# 将正则表达式编译成Pattern对象
pattern = re.compile(rworld)
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = re.search(pattern,hello world!)
if match:
  # 使用Match获得分组信息
  print match.group()
# 输出结果#world

(3)re.split(pattern, string[, maxsplit])

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。

import re
  
pattern = re.compile(r\d+)
print re.split(pattern,one1two2three3four4)
  
# 输出结果 
# [‘one‘, ‘two‘, ‘three‘, ‘four‘, ‘‘]

(4)re.findall(pattern, string[, flags]) 

搜索string,以列表形式返回全部能匹配的子串。#这条应用很多

import re
  
pattern = re.compile(r\d+)
print re.findall(pattern,one1two2three3four4)
  
# 输出结果 
# [‘1‘, ‘2‘, ‘3‘, ‘4‘]

(5)re.finditer(pattern, string[, flags])

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

import re
  
pattern = re.compile(r\d+)
for m in re.finditer(pattern,one1two2three3four4):
  print m.group(),
  
#输出结果
# 1 2 3 4

 (6)re.sub(pattern, repl, string[, count])

 使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

import re
  
pattern = re.compile(r(\w+) (\w+))
s = i say, hello world!
  
print re.sub(pattern,r\2 \1, s)
  
def func(m):
  return m.group(1).title() +   + m.group(2).title()
  
print re.sub(pattern,func, s)
  
#输出结果
# say i, world hello!
# I Say, Hello World!

(7)re.subn(pattern, repl, string[, count])

返回 (sub(repl, string[, count]), 替换次数)。

import re
  
pattern = re.compile(r(\w+) (\w+))
s = i say, hello world!
  
print re.subn(pattern,r\2 \1, s)
  
def func(m):
  return m.group(1).title() +   + m.group(2).title()
  
print re.subn(pattern,func, s)
  
#输出结果
# (‘say i, world hello!‘, 2)
# (‘I Say, Hello World!‘, 2)

 

 学习资源来自:

https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143193331387014ccd1040c814dee8b2164bb4f064cff000

http://www.jb51.net/article/65286.htm

https://www.cnblogs.com/nomorewzx/p/4203829.html

http://crossincode.com/home/

 

 

 

Python:正则表达式

原文:https://www.cnblogs.com/kumata/p/9074943.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!