首先是神经元的模型
接下来是激励函数
神经网络的复杂度计算
层数:隐藏层+输出层
总参数=总的w+b
下图为2层
如下图
w为3*4+4个 b为4*2+2
接下来是损失函数
主流的有均分误差,交叉熵,以及自定义
这里贴上课程里面的代码
# -*- coding: utf-8 -*-
"""
Created on Sat May 26 18:42:08 2018
@author: Administrator
"""
import tensorflow as tf
import numpy as np
BATCH_SIZE=8
seed=23455
#基于seed产生随机数
rdm=np.random.RandomState(seed)
#初始化特征值为32个样本*2个特征值
#初始化标签
X=rdm.rand(32,2)
Y_=[[x1+x2+(rdm.rand()/10.0-0.05)] for (x1,x2) in X]
#定义输入,参数和输出和传播过程
x=tf.placeholder(tf.float32,shape=(None,2))
y_=tf.placeholder(tf.float32,shape=(None,1))
w1=tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y=tf.matmul(x,w1)
#定义损失函数以及反向传播方法
loss_mse=tf.reduce_mean(tf.square(y_-y))
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(loss_mse)
#会话训练
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
STEPS=20000
for i in range(STEPS):
start=(i*BATCH_SIZE)%32
end=(i*BATCH_SIZE)%32+BATCH_SIZE
#每次训练抽取start到end的数据
sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
#每500次打印一次参数
if i%500==0:
print("在%d次迭代后,参数为"%(i))
print(sess.run(w1))
#输出训练后的参数
print("\n")
print("FINAL w1 is:",sess.run(w1))
自定义损失函数
loss=tf.reduce_sum(tf.where(tf.greater(y,y_),COST(y-y_),PROFIT(y_-y)))
中间的where是判断y是否大于y_
如图
原文:https://www.cnblogs.com/DJC-BLOG/p/9094771.html