首页 > 其他 > 详细

BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】

时间:2018-05-27 22:31:43      阅读:177      评论:0      收藏:0      [点我收藏+]

题目链接

BZOJ3832

题解

神思路orz,根本不会做

\(f[i]\)为到\(i\)的最长路,\(g[i]\)\(i\)出发的最长路,二者可以拓扑序后\(dp\)求得
那么一条边\((u,v)\)的对应的最长链就是\(f[u] + 1 + g[v]\)
我们人为加入源汇点\(S\)\(T\)\(S\)向每个点连边,每个点向\(T\)连边
我们考虑把整个图划分开
一开始所有点都在\(T\)这边,割边为所有\(S\)的边
然后我们按照拓扑序把点逐一加入\(S\)集合中
加入时,我们删去\(S\)集合连向该点的边,然后询问所有边的最大值,即为删去该点的最长链
加入后,我们加入该点连向\(T\)集合的边
由于是按照拓扑序,所以以上提到的所有边就是该点的所有入边/出边

然后所有边的最大值可以用堆或者线段树维护

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 2000005,INF = 1000000000;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    return out * flag;
}
struct Heap{
    priority_queue<int> a,b;
    void ck(){while (!b.empty() && a.top() == b.top()) a.pop(),b.pop();}
    int size(){return a.size() - b.size();}
    void ins(int x){ck(); a.push(x);}
    void del(int x){ck(); b.push(x);}
    int top(){ck(); return size() ? a.top() : 0;}
}H;
int n,m,f[maxn],g[maxn],s[maxn];
int q[maxn],head,tail;
int h[maxn],de[maxn],ne;
int hi[maxn],nei;
struct EDGE{int to,nxt;}ed[maxm],e[maxm];
inline void build(int u,int v){
    ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
    de[v]++;
    e[++nei] = (EDGE){u,hi[v]}; hi[v] = nei;
}
void topu(){
    head = 0; tail = -1; int u;
    REP(i,n) if (!de[i]) q[++tail] = i;
    REP(i,n){
        s[i] = u = q[head++];
        Redge(u) if (!(--de[ed[k].to])) q[++tail] = ed[k].to;
    }
}
void init(){
    REP(i,n){
        int u = s[i];
        Redge(u) f[ed[k].to] = max(f[ed[k].to],f[u] + 1);
    }
    for (int i = n; i; i--){
        int u = s[i];
        Redge(u) g[u] = max(g[u],g[ed[k].to] + 1);
    }
}
void solve(){
    int ans = INF,ansu = 0,x;
    REP(i,n) H.ins(g[i]);
    REP(i,n){
        int u = s[i];
        H.del(g[u]);
        for (int k = hi[u]; k; k = e[k].nxt)
            H.del(f[e[k].to] + 1 + g[u]);
        x = H.top();
        if (x < ans) ans = x,ansu = u;
        H.ins(f[u]);
        Redge(u) H.ins(f[u] + 1 + g[ed[k].to]);
    }
    printf("%d %d\n",ansu,ans);
}
int main(){
    n = read(); m = read();
    int a,b;
    REP(i,m){
        a = read(); b = read();
        build(a,b);
    }
    topu();
    init();
    //REP(i,n) printf("node%d  f = %d   g = %d\n",i,f[i],g[i]);
    solve();
    return 0;
}

BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】

原文:https://www.cnblogs.com/Mychael/p/9097788.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!