Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8202 | Accepted: 5835 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include <iostream> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #define mod 10000 using namespace std; __int64 a,b,c,d; int main() { //freopen("data.in","r",stdin); __int64 f(__int64 n); int n; while(scanf("%d",&n)!=EOF) { if(n==-1) { break; } if(n==0) { printf("0\n"); continue; }else if(n==1) { printf("1\n"); continue; } a = 0; b = 1; c = 1; d = 1; __int64 ans = f(n); printf("%I64d\n",ans); } return 0; } __int64 f(__int64 n) { __int64 a1=1,b1=0,c1=1,d1=0; __int64 a2,b2,c2,d2; while(n>1) { if(n&1) { c2 = ((c*c1)%mod+(b*d1)%mod)%mod; b2 = ((c*b1)%mod+(b*a1)%mod)%mod; d2 = ((d*c1)%mod+(a*d1)%mod)%mod; a2 = ((d*b1)%mod+(a*a1)%mod)%mod; a1 = a2; b1 = b2; c1 = c2; d1 = d2; } c2 = ((c*c)%mod+(b*d)%mod)%mod; b2 = ((c*b)%mod+(b*a)%mod)%mod; d2 = ((d*c)%mod+(a*d)%mod)%mod; a2 = ((d*b)%mod+(a*a)%mod)%mod; a = a2; b = b2; c = c2; d = d2; n = n>>1; } c2 = ((c*c1)%mod+(b*d1)%mod)%mod; b2 = ((c*b1)%mod+(b*a1)%mod)%mod; d2 = ((d*c1)%mod+(a*d1)%mod)%mod; a2 = ((d*b1)%mod+(a*a1)%mod)%mod; a1 = a2; b1 = b2; c1 = c2; d1 = d2; return b1; }
原文:http://blog.csdn.net/yongxingao/article/details/19047113