首页 > 其他 > 详细

Educational Codeforces Round 41 (Rated for Div. 2) E. Tufurama

时间:2018-06-06 17:33:23      阅读:161      评论:0      收藏:0      [点我收藏+]
E. Tufurama
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Polycarp decided to rewatch his absolute favourite episode of well-known TV series "Tufurama". He was pretty surprised when he got results only for season 7 episode 3 with his search query of "Watch Tufurama season 3 episode 7 online full hd free". This got Polycarp confused — what if he decides to rewatch the entire series someday and won‘t be able to find the right episodes to watch? Polycarp now wants to count the number of times he will be forced to search for an episode using some different method.

TV series have n seasons (numbered 1 through n), the i-th season has ai episodes (numbered 1 through ai). Polycarp thinks that if for some pair of integers x and y (x?<?y) exist both season x episode y and season y episode x then one of these search queries will include the wrong results. Help Polycarp to calculate the number of such pairs!

Input

The first line contains one integer n (1??≤?n??≤??2·105) — the number of seasons.

The second line contains n integers separated by space a1,?a2,?...,?an (1?≤?ai?≤?109) — number of episodes in each season.

Output

Print one integer — the number of pairs x and y (x?<?y) such that there exist both season x episode y and season y episode x.

Examples
input
Copy
5
1 2 3 4 5
output
Copy
0
input
Copy
3
8 12 7
output
Copy
3
input
Copy
3
3 2 1
output
Copy
2
Note

Possible pairs in the second example:

  1. x?=?1, y?=?2 (season 1 episode 2 技术分享图片 season 2 episode 1);
  2. x?=?2, y?=?3 (season 2 episode 3 技术分享图片 season 3 episode 2);
  3. x?=?1, y?=?3 (season 1 episode 3 技术分享图片 season 3 episode 1).

In the third example:

  1. x?=?1, y?=?2 (season 1 episode 2 技术分享图片 season 2 episode 1);
  2. x?=?1, y?=?3 (season 1 episode 3 技术分享图片 season 3 episode 1).

思路一:对于每一个a[i], 我们要统计的是[i + 1, a[i] ]区间内有多少个a[j] >= i,于是就是一个很显然的线段树套pbds,时间复杂度nlog2n, 空间复杂度nlogn。

技术分享图片
 1 #include <iostream>
 2 #include <fstream>
 3 #include <sstream>
 4 #include <cstdlib>
 5 #include <cstdio>
 6 #include <cmath>
 7 #include <string>
 8 #include <cstring>
 9 #include <algorithm>
10 #include <queue>
11 #include <stack>
12 #include <vector>
13 #include <set>
14 #include <map>
15 #include <list>
16 #include <iomanip>
17 #include <cctype>
18 #include <cassert>
19 #include <bitset>
20 #include <ctime>
21 
22 using namespace std;
23 
24 #define ll long long
25 #define pii pair<int, int>
26 #define pb push_back
27 #define mp make_pair
28 #define clr(a, x) memset(a, x, sizeof(a))
29 
30 const double pi = acos(-1.0);
31 const int INF = 0x3f3f3f3f;
32 const int MOD = 1e9 + 7;
33 const double EPS = 1e-9;
34 
35 
36 #include <ext/pb_ds/assoc_container.hpp>
37 #include <ext/pb_ds/tree_policy.hpp>
38 
39 using namespace __gnu_pbds;
40 
41 tree<pii, null_type, greater<pii>, rb_tree_tag, tree_order_statistics_node_update> T[800015];
42 int n, a[200015];
43 
44 void build(int i, int l, int r) {
45     for (int j = l; j <= r; ++j) {
46         T[i].insert(pii(a[j], j));
47     }
48     if (l == r) {
49         return;
50     }
51     int mi = l + r >> 1;
52     build(i << 1, l, mi);
53     build(i << 1 | 1, mi + 1, r);
54 }
55 int query(int i, int l, int r, int x, int y, int z) {
56     if (x <= l && r <= y) {
57         return T[i].order_of_key(pii(z, 0));
58     }
59     int mi = l + r >> 1;
60     int res = 0;
61     if (x <= mi) res += query(i << 1, l, mi, x, y, z);
62     if (mi < y) res += query(i << 1 | 1, mi + 1, r, x, y, z);
63     return res;
64 }
65 int main() {
66     scanf("%d", &n);
67     for (int i = 1; i <= n; ++i) {
68         scanf("%d", &a[i]);
69     }
70     build(1, 1, n);
71     ll res = 0;
72     for (int i = 1; i <= n; ++i) {
73         if (i < a[i]) {
74             res += query(1, 1, n, i + 1, min(a[i], n), i);
75         }
76     }
77     printf("%lld\n", res);
78     return 0;
79 }
View Code

思路二:我们将每个值向后的影响称为种韭菜,将统计每个值之前有影响的点对称为割韭菜。我们不按照下标的顺序割韭菜,而是处理一下,对于每个点,若a[i] >= i, 则之前种的韭菜都能收割到,割韭菜的时机还是i;否则割韭菜的时机就要改为a[i]。所以最终就树状数组正常更新就行了,只是更改一下查询的时间点。代码比思路一快了10倍。

技术分享图片
 1 #include <iostream>
 2 #include <fstream>
 3 #include <sstream>
 4 #include <cstdlib>
 5 #include <cstdio>
 6 #include <cmath>
 7 #include <string>
 8 #include <cstring>
 9 #include <algorithm>
10 #include <queue>
11 #include <stack>
12 #include <vector>
13 #include <set>
14 #include <map>
15 #include <list>
16 #include <iomanip>
17 #include <cctype>
18 #include <cassert>
19 #include <bitset>
20 #include <ctime>
21 
22 using namespace std;
23 
24 #define pau system("pause")
25 #define ll long long
26 #define pii pair<int, int>
27 #define pb push_back
28 #define mp make_pair
29 #define clr(a, x) memset(a, x, sizeof(a))
30 
31 const double pi = acos(-1.0);
32 const int INF = 0x3f3f3f3f;
33 const int MOD = 1e9 + 7;
34 const double EPS = 1e-9;
35 
36 /*
37 #include <ext/pb_ds/assoc_container.hpp>
38 #include <ext/pb_ds/tree_policy.hpp>
39 
40 using namespace __gnu_pbds;
41 tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update> T;
42 */
43 
44 int n, a[200015], c[200015];
45 vector<int> q[200015];
46 void add(int p, int x) {for (; p <= n; p += p & -p) c[p] += x;}
47 int query(int p) {
48     int res = 0;
49     for (; p; p -= p & -p) res += c[p];
50     return res;
51 }
52 int main() {
53     scanf("%d", &n);
54     for (int i = 1; i <= n; ++i) {
55         scanf("%d", &a[i]);
56         if (a[i] > i) q[i].pb(i);
57         else q[a[i]].pb(i);
58     }
59     ll ans = 0;
60     for (int i = 1; i <= n; ++i) {
61         if (i < a[i]) {
62             add(i + 1, 1);
63             add(a[i] + 1, -1);
64         }
65         for (int j = 0; j < q[i].size(); ++j) {
66             ans += query(q[i][j]);
67         }
68     }
69     printf("%lld\n", ans);
70     return 0;
71 }
View Code

 

Educational Codeforces Round 41 (Rated for Div. 2) E. Tufurama

原文:https://www.cnblogs.com/BIGTOM/p/9146144.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!