Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个全自动的orm框架,hibernate可以自动生成SQL语句,自动执行,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库。 Hibernate可以应用在任何使用JDBC的场合,既可以在Java的客户端程序使用,也可以在Servlet/JSP的Web应用中使用,最具革命意义的是,Hibernate可以在应用EJB的J2EE架构中取代CMP,完成数据持久化的重任。
Hibernate的API一共有6个,分别为:Session、SessionFactory、Transaction、Query、Criteria和Configuration。通过这些接口,可以对持久化对象进行存取、事务控制。
Session
Session接口负责执行被持久化对象的CRUD操作(CRUD的任务是完成与数据库的交流,包含了很多常见的SQL语句)。但需要注意的是Session对象是非线程安全的。同时,Hibernate的session不同于JSP应用中的HttpSession。这里当使用session这个术语时,其实指的是Hibernate中的session,而以后会将HttpSession对象称为用户session。
SessionFactory
SessionFactory接口负责初始化Hibernate。它充当数据存储源的代理,并负责创建Session对象。这里用到了工厂模式。需要注意的是SessionFactory并不是轻量级的,因为一般情况下,一个项目通常只需要一个SessionFactory就够,当需要操作多个数据库时,可以为每个数据库指定一个SessionFactory。
Transaction
Transaction 接口是一个可选的API,可以选择不使用这个接口,取而代之的是Hibernate 的设计者自己写的底层事务处理代码。 Transaction 接口是对实际事务实现的一个抽象,这些实现包括JDBC的事务、JTA 中的UserTransaction、甚至可以是CORBA 事务。之所以这样设计是能让开发者能够使用一个统一事务的操作界面,使得自己的项目可以在不同的环境和容器之间方便地移植。
Query
Query接口让你方便地对数据库及持久对象进行查询,它可以有两种表达方式:HQL语言或本地数据库的SQL语句。Query经常被用来绑定查询参数、限制查询记录数量,并最终执行查询操作。
Criteria
Criteria接口与Query接口非常类似,允许创建并执行面向对象的标准化查询。值得注意的是Criteria接口也是轻量级的,它不能在Session之外使用。
Configuration
Configuration 类的作用是对Hibernate 进行配置,以及对它进行启动。在Hibernate 的启动过程中,Configuration 类的实例首先定位映射文档的位置,读取这些配置,然后创建一个SessionFactory对象。虽然Configuration 类在整个Hibernate 项目中只扮演着一个很小的角色,但它是启动hibernate 时所遇到的第一个对象。
Hibernate版本
Hibernate版本更新速度很快,目前为止有多个阶段性的版本:Hibernate3,Hibernate4和Hibernate5,这一点程序员从其Jar文件名便可以看出来。目前(2018-01-10)最新发布的版本是Hibernate ORM 5.2.12.Final Released。
Hibernate2系列的最高版本是Hibernate2.1.8,Hibernate3系列的最高版本是hibernate-distribution-3.6.10.Final-dist版,但使用较多且较稳定的版本是Hibernate 3.1.3或Hibernate 3.1.2。
另外,自Hibernate3发布以来,其产品线愈加成熟,相继出现了Hibernate注释、Hibernate实体管理器、Hibernate插件工具等一系列产品套件。在方便程序员使用Hibernate进行应用程序的开发的同时,也逐渐增强了Hibernate产品线的实力。
目前Hibernate已经出现了4.0以及5.0的版本
Assigned
Assigned方式由用户生成主键值,并且要在save()之前指定否则会抛出异常
特点:主键的生成值完全由用户决定,与底层数据库无关。用户需要维护主键值,在调用session.save()之前要指定主键值。
Hilo
Hilo使用高低位算法生成主键,高低位算法使用一个高位值和一个低位值,
然后把算法得到的两个值拼接起来作为数据库中的唯一主键。Hilo方式需要额外的数据库表和字段提供高位值来源。默认情况下使用的表是
hibernate_unique_key,默认字段叫作next_hi。next_hi必须有一条记录否则会出现错误。
特点:需要额外的数据库表的支持,能保证同一个数据库中主键的唯一性,但不能保证多个数据库之间主键的唯一性。Hilo主键生成方式由Hibernate 维护,所以Hilo方式与底层数据库无关,但不应该手动修改hi/lo算法使用的表的值,否则会引起主键重复的异常。
Increment
Increment方式对主键值采取自动增长的方式生成新的主键值,但要求底层数据库的主键类型为long,int等数值型。主键按数值顺序递增,增量为1。
/*特点:由Hibernate本身维护,适用于所有的数据库,不适合多进程并发更新数据库,适合单一进程访问数据库。不能用于群集环境。*/
Identity
Identity方式根据底层数据库,来支持自动增长,不同的数据库用不同的主键增长方式。
特点:与底层数据库有关,要求数据库支持Identity,如MySQl中是auto_increment, SQL Server 中是Identity,支持的数据库有MySql、SQL Server、DB2、Sybase和HypersonicSQL。 Identity无需Hibernate和用户的干涉,使用较为方便,但不便于在不同的数据库之间移植程序。
Sequence
Sequence需要底层数据库支持Sequence方式,例如Oracle数据库等
特点:需要底层数据库的支持序列,支持序列的数据库有DB2、PostgreSql、Oracle、SAPDb等在不同数据库之间移植程序,特别从支持序列的数据库移植到不支持序列的数据库需要修改配置文件。
Native
Native主键生成方式会根据不同的底层数据库自动选择Identity、Sequence、Hilo主键生成方式
特点:根据不同的底层数据库采用不同的主键生成方式。由于Hibernate会根据底层数据库采用不同的映射方式,因此便于程序移植,项目中如果用到多个数据库时,可以使用这种方式。
UUID
UUID使用128位UUID算法生成主键,能够保证网络环境下的主键唯一性,也就能够保证在不同数据库及不同服务器下主键的唯一性。
特点:能够保证数据库中的主键唯一性,生成的主键占用比较多的存贮空间
Foreign GUID
Foreign用于一对一关系中。GUID主键生成方式使用了一种特殊算法,保证生成主键的唯一性,支持SQL Server和MySQL
net.sf.hibernate.*
该包的类基本上都是接口类和异常类
net.sf.hibernate.cache.*
JCS的实现类
net.sf.hibernate.cfg.*
配置文件读取类
net.sf.hibernate.collection.*
Hibernate集合接口实现类,例如List,Set,Bag等等,Hibernate之所以要自行编写集合接口实现类是为了支持lazy loading
net.sf.hibernate.connection.*
几个数据库连接池的Provider
net.sf.hibernate.dialect.*
支持多种数据库特性,每个Dialect实现类代表一种数据库,描述了该数据库支持的数据类型和其它特点,例如是否有AutoIncrement,是否有Sequence,是否有分页sql等等
net.sf.hibernate. eg.*
Hibernate文档中用到的例子
net.sf.hibernate.engine.*
这个包的类作用比较散
net.sf.hibernate.expression.*
HQL支持的表达式
net.sf.hibernate.hq.*
HQL实现
net.sf.hibernate. id.*
ID生成器
net.sf.hibernate.impl.*
最核心的包,一些重要接口的实现类,如Session,SessionFactory,Query等
net.sf.hibernate.jca.*
JCA支持,把Session包装为支持JCA的接口实现类
net.sf.hibernate.jmx.*
JMX是用来编写App Server的管理程序的,大概是JMX部分接口的实现,使得App Server可以通过JMX接口管理Hibernate
net.sf.hibernate.loader.*
也是很核心的包,主要是生成sql语句的
net.sf.hibernate.lob.*
Blob和Clob支持
net.sf.hibernate.mapping.*
hbm文件的属性实现
net.sf.hibernate.metadata.*
PO的Meta实现
net.sf.hibernate.odmg.*
ODMG是一个ORM标准,这个包是ODMG标准的实现类
net.sf.hibernate.persister.*
核心包,实现持久对象和表之间的映射
net.sf.hibernate.proxy.*
Proxy和Lazy Loading支持
net.sf.hibernate. ps.*
该包是PreparedStatment Cache
net.sf.hibernate.sql.*
生成JDBC sql语句的包
net.sf.hibernate.test.*
测试类,你可以用junit来测试Hibernate
net.sf.hibernate.tool.hbm2ddl.*
用hbm配置文件生成DDL
net.sf.hibernate.transaction.*
Hibernate Transaction实现类
net.sf.hibernate.type.*
Hibernate中定义的持久对象的属性的数据类型
net.sf.hibernate.util.*
一些工具类,作用比较散
net.sf.hibernate.xml.*
XML数据绑定
Hibernate 中提供了两级Cache(高速缓冲存储器),第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或集群范围的缓存。这一级别的缓存可以进行配置和更改,并且可以动态加载和卸载。 Hibernate还为查询结果提供了一个查询缓存,它依赖于第二级缓存。
第一级缓存 第二级缓存 存放数据的形式 相互关联的持久化对象的散装数据 缓存的范围
事务范围,每个事务都有单独的第一级缓存进程范围或集群范围,缓存被同一个进程或集群范围内的所有事务共享 并发访问策略由于每个事务都拥有单独的第一级缓存,不会出现并发问题,无需提供并发访问策略由于多个事务会同时访问第二级缓存中相同数据,因此必须提供适当的并发访问策略,来保证特定的事务隔离级别数据过期策略没有提供数据过期策略。处于一级缓存中的对象永远不会过期,除非应用程序显式清空缓存或者清除特定的对象必须提供数据过期策略,如基于内存的缓存中的对象的最大数目,允许对象处于缓存中的最长时间,以及允许对象处于缓存中的最长空闲时间。
物理存储介质内存和硬盘 对象的散装数据首先存放在基于内存的缓存中,当内存中对象的数目达到数据过期策略中指定上限时,就会把其余的对象写入基于硬盘的缓存中。
缓存的软件实现 在Hibernate的Session的实现中包含了缓存的实现由第三方提供,Hibernate仅提供了缓存适配器(CacheProvider)。用于把特定的缓存插件集成到Hibernate中。启用缓存的方式只要应用程序通过Session接口来执行保存、更新、删除、加载和查询数据库数据的操作,Hibernate就会启用第一级缓存,把数据库中的数据以对象的形式拷贝到缓存中,对于批量更新和批量删除操作,如果不希望启用第一级缓存,可以绕过Hibernate API,直接通过JDBC API来执行指操作。用户可以在单个类或类的单个集合的粒度上配置第二级缓存。如果类的实例被经常读但很少被修改,就可以考虑使用第二级缓存。只有为某个类或集合配置了第二级缓存,Hibernate在运行时才会把它的实例加入到第二级缓存中。 用户管理缓存的方式第一级缓存的物理介质为内存,由于内存容量有限,必须通过恰当的检索策略和检索方式来限制加载对象的数目。Session的evict()方法可以显式清空缓存中特定对象,但这种方法不值得推荐。 第二级缓存的物理介质可以是内存和硬盘,因此第二级缓存可以存放大量的数据,数据过期策略的maxElementsInMemory属性值可以控制内存中的对象数目。管理第二级缓存主要包括两个方面:选择需要使用第二级缓存的持久类,设置合适的并发访问策略:选择缓存适配器,设置合适的数据过期策略。
当应用程序调用Session的save()、update()、saveOrUpdate()、get()或load(),以及调用查询接口的 list()、iterate()或filter()方法时,如果在Session缓存中还不存在相应的对象,Hibernate就会把该对象加入到第一级缓存中。当清理缓存时,Hibernate会根据缓存中对象的状态变化来同步更新数据库。 Session为应用程序提供了两个管理缓存的方法: evict(Object obj):从缓存中清除参数指定的持久化对象。 clear():清空缓存中所有持久化对象。
3.1. Hibernate的二级缓存策略的一般过程如下:
1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查询数据库,一次获得所有的数据对象。
2) 把获得的所有数据对象根据ID放入到第二级缓存中。
3) 当Hibernate根据ID访问数据对象的时候,首先从Session一级缓存中查;查不到,如果配置了二级缓存,那么从二级缓存中查;查不到,再查询数据库,把结果按照ID放入到缓存。
4) 删除、更新、增加数据的时候,同时更新缓存。
Hibernate的二级缓存策略,是针对于ID查询的缓存策略,对于条件查询则毫无作用。为此,Hibernate提供了针对条件查询的Query Cache。
3.2. 什么样的数据适合存放到第二级缓存中? 1 很少被修改的数据 2 不是很重要的数据,允许出现偶尔并发的数据 3 不会被并发访问的数据 4 参考数据,指的是供应用参考的常量数据,它的实例数目有限,它的实例会被许多其他类的实例引用,实例极少或者从来不会被修改。
3.3. 不适合存放到第二级缓存的数据? 1 经常被修改的数据 2 财务数据,绝对不允许出现并发 3 与其他应用共享的数据。
3.4. 常用的缓存插件 Hibernater 的二级缓存是一个插件,下面是几种常用的缓存插件:
l EhCache:可作为进程范围的缓存,存放数据的物理介质可以是内存或硬盘,对Hibernate的查询缓存提供了支持。
l OSCache:可作为进程范围的缓存,存放数据的物理介质可以是内存或硬盘,提供了丰富的缓存数据过期策略,对Hibernate的查询缓存提供了支持。
l SwarmCache:可作为群集范围内的缓存,但不支持Hibernate的查询缓存。
l JBossCache:可作为群集范围内的缓存,支持事务型并发访问策略,对Hibernate的查询缓存提供了支持。
上述4种缓存插件的对比情况列于表9-3中。
表9-3 4种缓存插件的对比情况
缓存插件 |
支持只读 |
支持非严格读写 |
支持读写 |
支持事务 |
EhCache |
是 |
是 |
是 |
|
OSCache |
是 |
是 |
是 |
|
SwarmCache |
是 |
是 |
||
JBossCache |
是 |
是 |
它们的提供器列于表9-4中。
表9-4 缓存策略的提供器
缓存插件 |
提供器(Cache Providers) |
Hashtable(只能测试时使用) |
org.hibernate.cache.HashtableCacheProvider |
EhCache |
org.hibernate.cache.EhCacheProvider |
OSCache |
org.hibernate.cache.OSCacheProvider |
在默认情况下,Hibernate使用EhCache进行JVM级别的缓存。用户可以通过设置Hibernate配置文件中的hibernate.cache.provider_class的属性,指定其他的缓存策略,该缓存策略必须实现org.hibernate.cache.CacheProvider接口。
3.5. 配置二级缓存的主要步骤:
1) 选择需要使用二级缓存的持久化类,设置它的命名缓存的并发访问策略。这是最值得认真考虑的步骤。
2) 选择合适的缓存插件,然后编辑该插件的配置文件。
延迟加载
Hibernate对象关系映射提供延迟的与非延迟的对象初始化。非延迟加载在读取一个对象的时候会将与这个对象所有相关的其他对象一起读取出来。这有时会导致成百的(如果不是成千的话)select语句在读取对象的时候执行。这个问题有时出现在使用双向关系的时候,经常会导致整个数据库都在初始化的阶段被读出来了。当然,你可以不厌其烦地检查每一个对象与其他对象的关系,并把那些最昂贵的删除,但是到最后,我们可能会因此失去了本想在ORM工具中获得的便利。
一个明显的解决方法是使用Hibernate提供的延迟加载机制。这种初始化策略只在一个对象调用它的一对多或多对多关系时才将关系对象读取出来。这个过程对开发者来说是透明的,而且只进行了很少的数据库操作请求,因此会得到比较明显的性能提升。这项技术的一个缺陷是延迟加载技术要求一个Hibernate会话要在对象使用的时候一直开着。这会成为通过使用DAO模式将持久层抽象出来时的一个主要问题。为了将持久化机制完全地抽象出来,所有的数据库逻辑,包括打开或关闭会话,都不能在应用层出现。最常见的是,一些实现了简单接口的DAO实现类将数据库逻辑完全封装起来了。一种快速但是笨拙的解决方法是放弃DAO模式,将数据库连接逻辑加到应用层中来。这可能对一些小的应用程序有效,但是在大的系统中,这是一个严重的设计缺陷,妨碍了系统的可扩展性。
Web层延迟加载
幸运的是,Spring框架为Hibernate延迟加载与DAO模式的整合提供了一种方便的解决方法。以一个Web应用为例,Spring提供了OpenSessionInViewFilter和OpenSessionInViewInterceptor。我们可以随意选择一个类来实现相同的功能。两种方法唯一的不同就在于interceptor在Spring容器中运行并被配置在web应用的上下文中,而Filter在Spring之前运行并被配置在web.xml中。不管用哪个,他们都在请求将当前会话与当前(数据库)线程绑定时打开Hibernate会话。一旦已绑定到线程,这个打开了的Hibernate会话可以在DAO实现类中透明地使用。这个会话会为延迟加载数据库中值对象的视图保持打开状态。一旦这个逻辑视图完成了,Hibernate会话会在Filter的doFilter方法或者Interceptor的postHandle方法中被关闭。
实现方法在web.xml中加入
<filter>
<filter-name>hibernateFilter</filter-name>
<filter-class>
org.springframework.orm.hibernate3.support.OpenSessionInViewFilter
</filter-class>
</filter>
<filter-mapping>
<filter-name>hibernateFilter</filter-name>
<url-pattern>*.do</url-pattern>
</filter-mapping>
初用HIBERNATE的人也许都遇到过性能问题,实现同一功能,用HIBERNATE与用JDBC性能相差十几倍很正常,如果不及早调整,很可能影响整个项目的进度。 大体上,对于HIBERNATE性能调优的主要考虑点如下:
.数据库设计调整
.HQL优化
.API的正确使用(如根据不同的业务类型选用不同的集合及查询API)
.主配置参数(日志,查询缓存,fetch_size, batch_size等)
.映射文件优化(ID生成策略,二级缓存,延迟加载,关联优化)
.一级缓存的管理
.针对二级缓存,还有许多特有的策略
.事务控制策略。
a) 降低关联的复杂性
b) 尽量不使用联合主键
c) ID的生成机制,不同的数据库所提供的机制并不完全一样
d) 适当的冗余数据,不过分追求高范式
HQL如果抛开它同HIBERNATE本身一些缓存机制的关联,HQL的优化技巧同普通的SQL优化技巧一样,可以很容易在网上找到一些经验之谈。
a) 查询缓存,同下面讲的缓存不太一样,它是针对HQL语句的缓存,即完全一样的语句再次执行时可以利用缓存数据。但是,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反作用:它会白白耗费大量的系统资源但却难以派上用场。
b) fetch_size,同JDBC的相关参数作用类似,参数并不是越大越好,而应根据业务特征去设置
c) batch_size同上。
d) 生产系统中,切记要关掉SQL语句打印。
a) 数据库级缓存:这级缓存是最高效和安全的,但不同的数据库可管理的层次并不一样,比如,在Oracle中,可以在建表时指定将整个表置于缓存当中。
b) SESSION缓存:在一个HibernateSESSION有效,这级缓存的可干预性不强,大多于HIBERNATE自动管理,但它提供清除缓存的方法,这在大批量增加/更新操作是有效的。比如,同时增加十万条记录,按常规方式进行,很可能会发现OutofMemeroy的异常,这时可能需要手动清除这一级缓存:Session.evict以及 Session.clear
c) 应用缓存:在一个SESSIONFACTORY中有效,因此也是优化的重中之重,因此,各类策略也考虑的较多,在将数据放入这一级缓存之前,需要考虑一些前提条件:
i. 数据不会被第三方修改(比如,是否有另一个应用也在修改这些数据?)
ii. 数据不会太大
iii. 数据不会频繁更新(否则使用CACHE可能适得其反)
iv. 数据会被频繁查询
v. 数据不是关键数据(如涉及钱,安全等方面的问题)。
缓存有几种形式,可以在映射文件中配置:read-only(只读,适用于很少变更的静态数据/历史数据),nonstrict-read- write,read-write(比较普遍的形式,效率一般),transactional(JTA中,且支持的缓存产品较少)
d) 分布式缓存:同c)的配置一样,只是缓存产品的选用不同,oscache, jboss cache,的大多数项目,对它们的用于集群的使用(特别是关键交易系统)都持保守态度。在集群环境中,只利用数据库级的缓存是最安全的。
a) 实体延迟加载:通过使用动态代理实现
b) 集合延迟加载:通过实现自有的SET/LIST,HIBERNATE提供了这方面的支持
c) 属性延迟加载:
a) 完成同样一件事,Hibernate提供了可供选择的一些方式,但具体使用什么方式,可能用性能/代码都会有影响。显示,一次返回十万条记录 (List/Set/Bag/Map等)进行处理,很可能导致内存不够的问题,而如果用基于游标(ScrollableResults)或 Iterator的结果集,则不存在这样的问题。
b) Session的load/get方法,前者会使用二级缓存,而后者则不使用。
c) Query和list/iterator,如果去仔细研究一下它们,你可能会发现很多有意思的情况,二者主要区别(如果使用了Spring,在HibernateTemplate中对应find,iterator方法):
i. list只能利用查询缓存(但在交易系统中查询缓存作用不大),无法利用二级缓存中的单个实体,但list查出的对象会写入二级缓存,但它一般只生成较少的执行SQL语句,很多情况就是一条(无关联)。
ii. iterator则可以利用二级缓存,对于一条查询语句,它会先从数据库中找出所有符合条件的记录的ID,再通过ID去缓存找,对于缓存中没有的记录,再构造语句从数据库中查出,因此很容易知道,如果缓存中没有任何符合条件的记录,使用iterator会产生N+1条SQL语句(N为符合条件的记录数)
iii. 通过iterator,配合缓存管理API,在海量数据查询中可以很好的解决内存问题,如:
while(it.hasNext()){
YouObject object = (YouObject)it.next();
session.evict(youObject);
sessionFactory.evice(YouObject.class, youObject.getId());
}
如果用list方法,很可能就出OutofMemory错误了。
在Hibernate3.1文档的“19.5. Understanding Collection performance”中有详细的说明。
事务方面对性能有影响的主要包括:事务方式的选用,事务隔离级别以及锁的选用
a) 事务方式选用:如果不涉及多个事务管理器事务的话,不需要使用JTA,只有
JDBC的事务控制就可以。
b) 事务隔离级别:参见标准的SQL事务隔离级别
c) 锁的选用:悲观锁(一般由具体的事务管理器实现),对于长事务效率低,但安全。乐观锁(一般在应用级别实现),如在HIBERNATE中可以定义 VERSION字段,显然,如果有多个应用操作数据,且这些应用不是用同一种乐观锁机制,则乐观锁会失效。因此,针对不同的数据应有不同的策略,同前面许多情况一样,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解。
即使是使用JDBC,在进行大批数据更新时,BATCH与不使用BATCH有效率上也有很大的差别。可以通过设置batch_size来让其支持批量操作。
举个例子,要批量删除某表中的对象,如“delete Account”,打出来的语句,HIBERNATE找出了所有ACCOUNT的ID,再进行删除,这主要是为了维护二级缓存,这样效率肯定高不了,在后续的版本中增加了bulk delete/update,但这也无法解决缓存的维护问题。也就是说,由于有了二级缓存的维护问题,HIBERNATE的批量操作效率并不尽如人意。
1、通过Configuration().configure();读取并解析hibernate.cfg.xml配置文件。
2、由hibernate.cfg.xml中的<mappingresource="com/xx/User.hbm.xml"/>读取解析映射信息。
3、通过config.buildSessionFactory();//得到sessionFactory。
4、sessionFactory.openSession();//得到session。
5、session.beginTransaction();//开启事务。
6、persistent operate;
7、session.getTransaction().commit();//提交事务
8、关闭session;
9、关闭sessionFactory;
1、封装了jdbc,简化了很多重复性代码。
2、简化了DAO层编码工作,使开发更对象化了。
3、移植性好,支持各种数据库,如果换个数据库只要在配置文件中变换配置就可以了,不用改变hibernate代码。
4、支持透明持久化,因为hibernate操作的是纯粹的(pojo)java类,没有实现任何接口,没有侵入性。所以说它是一个轻量级框架。
get不支持延迟加载,load支持延迟加载。
1、hibernate2对 实体对象和集合 实现了延迟加载
2、hibernate3对 提供了属性的延迟加载功能
hibernate延迟加载就是当使用session.load(User.class,1)或者session.createQuery()查询对象或者属性的时候
这个对象或者属性并没有在内存中,只有当程序操作数据的时候,才会存在内存中,这样就实现延迟加载,节省了内存的开销,从而提高了服务器的性能。
一级缓存:session级的缓存也叫事务级的缓存,只缓存实体,生命周期和session一致。不能对其进行管理。
不用显示的调用。
二级缓存:sessionFactory缓存,也叫进程级的缓存,使用第3方插件实现的,也只缓存实体,生命周期和sessionFactory一致,可以进行管理。
首先配置第3方插件,我们用的是EHCache,在hibernate.cfg.xml文件中加入
<propertyname="hibernate.cache.user_second_level_cache">true</property>
在映射中也要显示的调用,<cacheusage="read-only"/>
二级缓存之查询缓存:对普通属性进行缓存。如果关联的表发生了修改,那么查询缓存的生命周期也结束了。
在程序中必须手动启用查询缓存:query.setCacheable(true);
1、使用一对多的双向关联,尽量从多的一端维护。
2、不要使用一对一,尽量使用多对一。
3、配置对象缓存,不要使用集合缓存。
4、表字段要少,表关联不要怕多,有二级缓存撑腰。
hibernate 类与类之间关系
关联关系
聚集关系
继承关系
Hibernate继承关系映射策略分为三种:一张表对应一整棵类继承树、一个类对应一张表、每一个具体类对应一张表。
Hibernate从其配置文件中读取和数据库连接有关的信息。Hibernate配置文件有两种形式,XML格式或者java属性文件(properties)格式。
(一)java属性文件的格式创建hibernate的配置文件,默认文件名为hibernate.properties,为键值对的形式,放在src目录下:例如
hibernate.dialect=org.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class=com.mysql.jdbc.Driver hibernate.connection.url=jdbv:mysql://localhost:3306/hibernate
hibernate.connection.username=root
hibernate.connection.password=123456
hibernate.show_sql=true
hibernate.dialect:指定数据库使用的sql方言。可以根据数据库的不同生成不同的方言,底层是通过调用一个一个类实现的。
hibernate.connection.driver_class:指定数据库的驱动程序
hibernate.connection.url:指定连接数据库的url
hibernate.connection.username:指定连接数据库的用户名
hibernate.connection.password:指定连接数据库的密码
hibernate.show_sql:如果为true,可以在控制台打印sql语句
hbm2ddl.auto:生成表结构的策略配置,配置这个可以通过映射文件和实体类自动生成表结构
有四个值:
update(最常用的取值):如果当前数据库不存在对应的数据表,那么自动创建数据表;
如果存在对应的数据表,并且表结构和实体类属性一致,那么不做任何修改;
如果存在对应的数据表,但是表结构和实体类属性不一致,那么会新创建与实体类属性对应的列,其他列不变
create(很少使用):无论是否存在对应的数据表,每次启动Hibernate都会重新创建对应的数据表,以前的数据会丢失
create-drop(极少使用):无论是否存在对应的数据表,每次启动Hibernate都会重新创建对应的数据表,每次运行结束删除数据表
validate(很少使用):只校验表结构是否和我们的实体类属性相同,不同就抛异常
(二)使用xml格式的配置文件,默认文件名为hibernate.cfg.xml
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN" "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>
<property name="hibernate.connection.username">Root</property>
<property name="hibernate.connection.password">123456</property>
<property name="hibernate.connection.url">jdbc:mysql://localhost:3306/hibernate</property>
<property name="show_sql">true</property>
<property name="format_sql">true</property>
<property name="hbm2ddl.auto">update</property>
<property name="hibernate.connection.autocommit">true</property> //引入映射文件
<mapping resource="com/cad/domain/User.hbm.xml"/>
</session-factory>
</hibernate-configuration>
两种方式的区别
如果Hibernate的配置文件为java属性文件,那么必须通过代码来声明需要加载的映射文件
通过Configuration的addClass(实体类名.class)来加载。
配置文件为xml文件时,可以通过<mapping>元素来指定需要加载的映射文件。
当通过Configuration的默认构造方法创建实例时,会默认查找hibernate.properties文件,如果找到就将配置信息加载到内存中。
默认情况下,hibernate不会加载hibernate.cfg.xml文件,必须通过Configuration的configure()方法来显式加载hibernate.cfg.xml文件
-必须提供无参数的默认构造方法。因为程序运行时,Hibernate会运用java的反射机制,创建实体类的实例。
-所有属性必须提供public访问控制符的set get方法
-属性应尽量使用基本数据类型的包装类型(如Integer)
基本数据类型无法表达null值,所有基本数据类型的默认值都不是null,这样就有很大的缺陷。
例如有一个score属性,表示学生分数,如果为0,那么是表示该学生未参加考试还是说该学生成绩为0呢?
这时候如果用包装类型,就可以使用null来表示空值,学生未参加考试等等。
-不要用final修饰实体(将无法生成代理对象进行优化)
在关系数据库中,通过主键来识别记录并保证记录的唯一性。
主键的要求:不允许为null,不能重复,不能改变
自然主键:在业务中,某个属性符合主键的三个要求,那么该属性可以作为主键。比如人的身份证就可以当作主键
代理主键:增加一个不具备任何意义的字段,通常为ID,来作为主键
在java中,按照内存地址不同区分不同的对象。
在Hibernate中通过对象标识符(OID)来维持java对象和数据库表中对应的记录。
与表的代理主键对应,OID也是整数类型,为了保证OID的唯一性和不可变性,通常由Hibernate或者底层数据库库给OID赋值。
Hiernate采用XML格式的文件来指定对象和关系数据之间的映射。Hibernate通过这个文件来生成各种sql语句。
命名规则为 实体类名.hbm.xml 应该和实体类放在同一目录下。
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<!--根元素,有一常用属性为package,当指定了package时,后面的类名字就可以简短,例如 package="com.cad.domain",后面class标签的name只用写User即可-->
<hibernate-mapping>
<!--class标签指定类和表的对应关系,name为类名,table为表名
class标签的属性 dynamic-insert属性,默认是false,当我们执行插入语句时,会动态生成sql语句,如果我们只为某个字段赋值,其他字段为null,但是生成的sql语句还是包含其他字段,例如user有两个属性,我们只为name赋值,生成的sql语句还是 insert into user(name,password)values (?,?),而当我们将该值设置为true时,生成的sql语句会仅包含不为null的字段,生成的sql语句就是insert into user(name) values (?)
class标签的属性 dynamic-update属性,默认是false,当我们执行更新语句时,会动态生成sql语句,如果我们只为某个字段更新,其他字段不变,生成的sql语句还是包含其他字段。而当我们将该值设置为true时,生成的sql语句仅包含需要更新的字段
使用上面的两个属性可以提高运行性能,但是Hibernate动态生成sql语句需要的性能很小,所以可以省略-->
<class name="com.cad.domain.User" table="user">
<!--id标签用来设定持久化类中的OID和表的主键的映射,name为持久化类中的属性,column是数据表中的主键列名
id标签的属性:length 指定列的数据长度
id标签的属性:unsaved-value 指定当主键为某个值时,当做null来处理
id标签的属性:access 也可用在<property>标签上 默认值为property,即通过相应的get set方法来访问持久化类的属性,当值为field时,表明使用反射机制直接访问类的属性,不推荐使用,破坏封装性-->
<id name="id" column="id">
<!--
generator标签用来设定主键生成策略,hibernate内置的几种主键生成策略
1.increment 适用于代理主键。由Hibernate自动以递增的方式生成主键,每次增量为1 ,会执行两个sql语句,先从表中查找出最大的id,然后加一,插入当前数据
2.identity 适用于代理主键。由底层数据库生成主键,依赖数据库的主键自增功能
3.sequence 适用于代理主键。由底层数据库的序列来生成主键,前提是数据库支持序列。(mysql不支持,oracle支持)
4.hilo 适用于代理主键。Hibernate根据hilo算法来自己生成主键。
5.native 适用于代理主键。根据底层数据库对自动生成主键的支持能力选择 identity|sequence|hilo
6.uuid 适用于代理主键。采用UUID算法生成主键。
7.assigned 适用于自然主键。由我们自己指定主键值。例如指定身份证号为主键值
-->
<generator class="native"></generator>
</id>
<!--
property标签属性 name指定持久化类的属性名称
column 与类属性映射的字段名,如果没有设置,默认用类属性名作为字段名
not-null 指定属性的约束是否为非空,默认false
unique 指定属性的约束是否唯一
type 指定Hibernate映射类型。例如java类型为string,数据库类型为text,那么应该把Hibernate类型设置为Text。有一张对应的表可以查看。如果没有指定映射类型,Hibernate会使用反射机制识别属性的java类型,然后自动使用与之对应的Hibernate映射类型
-->
<property name="name" column="name"></property>
<property name="password" column="password"></property>
</class>
</hibernate-mapping>
原文:https://www.cnblogs.com/zeussbook/p/9146720.html