1 __author__ = "WSX" 2 import cv2 as cv 3 import numpy as np 4 5 def local_threshold(img): #局部阈值 6 gray = cv.cvtColor(img , cv.COLOR_BGR2GRAY) #首先变为灰度图 7 binary = cv.adaptiveThreshold( gray ,255 , cv.ADAPTIVE_THRESH_GAUSSIAN_C , cv.THRESH_BINARY, 25 , 10,)#255 最大值 8 #上面的 有两种方法ADAPTIVE_THRESH_GAUSSIAN_C (带权重的均值)和ADAPTIVE_THRESH_MEAN_C(和均值比较) 9 #blockSize 必须为奇数 ,c为常量(每个像素块均值 和均值比较 大的多余c。。。少于c) 10 #ret 阈值 , binary二值化图像 11 cv.imshow("binary", binary) 12 return binary 13 14 def jinzita( level ,img ): 15 temp = img.copy() 16 level = level 17 pyr_img = [] 18 for i in range(level): 19 dst = cv.pyrDown( temp ) #pyrup 和pyrDown 相反 20 temp = dst.copy() 21 return temp 22 23 def result(binary): 24 w , h = binary.shape[:2] 25 print(binary) 26 print(w,h) 27 # temp = np.zeros((w ,h)) 28 # temp = list(temp) 29 #temp = []; tt = [] 30 with open("result.txt","r+") as f: 31 for i in range(w): 32 for j in range(h): 33 if binary[i,j] == 0: 34 temp = "0" 35 elif binary[i,j] == 255: 36 temp = "1" 37 f.write(temp) 38 f.write("\r\n") 39 f.close() 40 #print(temp.shape) 41 def main(): 42 img = cv.imread("1.JPG") 43 #cv.namedWindow("Show", cv.WINDOW_AUTOSIZE) 44 cv.imshow("Show", img) 45 t = jinzita(3, img) 46 binary=local_threshold(t) 47 result(binary) 48 cv.waitKey(0) 49 cv.destroyAllWindows() 50 51 main()
18、OpenCV Python 简单实现一个图片生成(类似抖音生成字母人像)
原文:https://www.cnblogs.com/WSX1994/p/9161703.html