看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来?
一般图要转为树,就使用圆方树呗
思考一下发现,两点之间经过的点双,点双内所有点一定都可以作为中介点
那么我们将方点赋值为点双大小,为了去重,剩余点赋值\(-1\)
答案就是任意两点间权值和之和
我们只需枚举每个点被经过多少次,这就很容易计算了
复杂度\(O(n)\)
#include<algorithm>
#include<iostream>
#include<cstdio>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define LL long long int
using namespace std;
const int maxn = 400005,maxm =1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int hh[maxn],Ne = 1,h[maxn],ne = 1;
struct EDGE{int from,to,nxt;}e[maxm],ed[maxm];
inline void build(int u,int v){
e[++Ne] = (EDGE){u,v,hh[u]}; hh[u] = Ne;
e[++Ne] = (EDGE){v,u,hh[v]}; hh[v] = Ne;
}
inline void add(int u,int v){
ed[++ne] = (EDGE){u,v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){v,u,h[v]}; h[v] = ne;
}
int n,m,val[maxn],dfn[maxn],low[maxn],inst[maxn],st[maxm],top,cnt,N;
void combine(int rt){
val[++N] = 1;
add(N,rt);
while (st[top] != rt && low[st[top]] >= dfn[rt]){
inst[st[top]] = false;
add(N,st[top--]),val[N]++;
}
}
void dfs(int u,int s){
dfn[u] = low[u] = ++cnt; st[++top] = u; inst[u] = true;
for (int k = hh[u],to; k; k = e[k].nxt){
if (k == s) continue;
if (!dfn[to = e[k].to]){
dfs(to,k ^ 1);
if (low[to] > dfn[u]){
top--; val[++N] = 2;
add(u,N); add(N,to);
}
else if (low[to] == dfn[u]) combine(u);
low[u] = min(low[u],low[to]);
}
else if (inst[to]) low[u] = min(low[u],dfn[to]);
}
}
int fa[maxn];
LL siz[maxn],ans,sum;
void DFS(int u){
siz[u] = u <= n ? 1 : 0;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u,DFS(to),siz[u] += siz[to];
}
LL tot = u <= n ? sum - 1 : 0;
Redge(u) if ((to = ed[k].to) != fa[u]){
tot += siz[to] * (sum - siz[to]);
}
tot += (sum - siz[u]) * siz[u];
ans += tot * val[u];
}
int main(){
N = n = read(); m = read();
REP(i,m) build(read(),read());
REP(i,n) val[i] = -1;
REP(i,n) if (!dfn[i]){
sum = cnt; top = 0; dfs(i,-1);
sum = cnt - sum; DFS(i);
}
printf("%lld\n",ans);
return 0;
}
1、圆方树的写法
2、点双的写法
3、一般图考虑树的做法的时候,可以考虑建圆方树
洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】
原文:https://www.cnblogs.com/Mychael/p/9190204.html