1 import tensorflow as tf 2 import numpy as np 3 4 #tensor = tf.constant([[1,2,3,4,5,6,7,8],[1,2,3,4,5,6,7,8]]) 5 tensor = tf.placeholder(tf.int32, [2,8]) 6 7 with tf.Session() as sess: 8 sess.run(tf.global_variables_initializer()) 9 print sess.run(tensor,feed_dict={tensor:[[1,2,3,4,5,6,7,8],[1,2,3,4,5,6,7,8]]}) 10 print sess.run(tensor) 11 tensorReshape = tf.reshape(tensor,[-1,4]) 12 print sess.run(tensorReshape)
print sess.run(tensor) 会报错,
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor ‘Placeholder‘ with dtype int32 and shape [2,8]
[[Node: Placeholder = Placeholder[dtype=DT_INT32, shape=[2,8], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
原因:feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run()
调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失。
原文:https://www.cnblogs.com/tsw123/p/9190824.html